

EQST insight | 1

Research & Technique

Lobe Chat SSRF Vulnerabilities (CVE-2024-47066)

■ Vulnerabilities Overview

Lobe Chat is a state-of-the-art design-integrated LLM1 front-end2 framework available

as open source. This framework supports various plug-in functions and allows for the free

distribution of chat applications that utilize various AI models and platforms, such as

Claude, Gemini, Groq, Ollama and OpenAI's ChatGPT.

We used OSINT3 search engines to search for Lobe Chat on the Internet, and found that as

of October 1, 2024, Lobe Chat was being distributed on over 7,000 sites in many countries,

including China and the United States.

Source: fofa.info

Figure 1. Lobe Chat usage statistics

1 Large Language Model (LLM): A type of artificial intelligence (AI) program that can perform tasks such as recognizing and

generating text

2 Front-end: The field in which user interfaces (UIs) such as websites and apps are developed

3 Open Source INTelligence (OSINT): Information legally collected from public sources

EQST insight | 2

On September 23, 2024, the server-side request forgery (SSRF) vulnerability (CVE-2024-

47066) of Lobe Chat was disclosed. This vulnerability occurs when the user fails to

sufficiently verify the IP address actually requested by the request function within an

application.

The input address verification process can be bypassed by redirecting4 to the internal

network address when entering an external service address. On March 11, 2024, a similar

SSRF vulnerability (CVE-2023-49785) was disclosed in NextChat, an LLM-enabled

cross-platform chat application. So when using LLM front-end applications, it is necessary

to check whether SSRF vulnerabilities occur.

This vulnerability allows an attacker to exploit the SSRF vulnerability and access sensitive

data that is only accessible internally, and in some circumstances, to execute arbitrary

commands.

4 Redirection: In HTTP, a redirect is a response with a 3xx status code, and the browser that receives it immediately loads

the new URL provided.

EQST insight | 3

■ Attack Scenario

The figure below shows a CVE-2024-47066 attack scenario.

Figure 2. CVE-2024-47066 attack scenario

① The attacker searches for vulnerable servers that are using Lobe Chat as an LLM frontend framework.

② The attacker exploits the CVE-2024-47066 vulnerability to steal EC2 instance IAM credentials.

③ The attacker installs malicious code on the EC2 instance using the stolen EC2 instance IAM credentials.

④ The attacker steals important information using the malware installed on the server.

■ Affected Software Versions

Software versions with the CVE-2024-47066 vulnerability:

S/W Vulnerable version

Lobe Chat 1.19.12 or earlier versions

EQST insight | 4

■ Test Environment Configuration

Build a test environment and examine the operation of CVE-2024-47066.

Name Information

Victim
Lobe Chat 1.19.12

(192.168.102.74:3210)

Attacker
Kali Linux

(192.168.216.131)

■ Vulnerability Test

Step 1. Configuration of the environment

The docker environment for CVE-2024-47066 Vulnerability testing can be found at the

EQST Lab’s GitHub Repository URL below:

•URL: https://github.com/EQSTLab/CVE-2024-47066

First, download the file from the CVE-2024-47066 repository using the git clone

command on the victim’s PC. The environment can now be easily built by entering the

following commands.

> cd docker

> docker compose up -d

Since version 1.19.12 is being used, we can see that this environment is vulnerable.

Figure 3. Finding a vulnerable Lobe Chat environment

EQST insight | 5

Step 2. Vulnerability test

You can find the PoC for testing the CVE-2024-47066 vulnerability at the EQST Lab's

GitHub Repository URL below:

•URL: https://github.com/EQSTLab/CVE-2024-47066

Download the PoC from the CVE-2024-47066 repository using the git clone command on

the attacker's PC.

Figure 4. Downloading the CVE-2024-47066 PoC

You can run the PoC file with CVE-2024-47066.py. The payload sent from the attacker's

PC is executed on the victim's Lobe Chat.

$ python3 CVE-2024-47066.py –v [Lobe Chat page] –i [Internal page]

The environment is configured with an address http://www.internal-service:4000 that can

only be accessed internally. An SSRF attack can be attempted against the service using

the following command.

$ python3 CVE-2024-47066.py –v http://192.168.102.74 –i http://www.internal-service:4000

Enter the PoC execution command on the attacker’s PC as shown below.

Figure 5. Example of the PoC execution command

As below, the victim PC is loading http://www.interal-service:4000, which is the

environment built internally.

Figure 6. Example of stealing internal data

EQST insight | 6

■ Detailed Analysis of the Vulnerability

This section provides a sequential description of the CVE-2024-47066 vulnerability

occurrence mechanism and the attack scenario. Step 1 presents the verification logic for

the address entered by the user and a method to bypass it. Step 2 explains SSRF attacks

and describes attack scenarios that can be applied to Lobe Chat.

Step 1. Exploring points vulnerable to SSRF attacks

1) Custom Plugin

Lobe Chat supports a variety of plugins, including plugins available in the Plugin Store as

well as custom plugins.

Figure 7. Custom plugin access path

When loading it, it is necessary to enter the address of the manifest file that describes

how the plug-in function is implemented. The manifest file contains the following:

Item Description

identifier Plugin identifier

api Array with all the API interfaces of the plugin listed

ui Address where the plugin loads the front-end interface

gateway Specified gateway for querying the API interfaces

version Plugin version

EQST insight | 7

According to the above specifications, the manifest file is made up of following json file.
{
 "api": [
 {
 "url": "http://localhost:3400/api/clothes",
 "name": "recommendClothes",
 "description": "Recommend clothes to the user based on their mood",
 "parameters": {
 "properties": {
 "mood": {
 "description": "The user's current mood, with optional values: happy, sad, anger,
fear, surprise, disgust",
 "enums": ["happy", "sad", "anger", "fear", "surprise", "disgust"],
 "type": "string"
 },
 "gender": {
 "type": "string",
 "enum": ["man", "woman"],
 "description": "The user's gender, which needs to be asked for from the user to
obtain this information"
 }
 },
 "required": ["mood", "gender"],
 "type": "object"
 }
 }
],
 "gateway": "http://localhost:3400/api/gateway",
 "identifier": "chat-plugin-template",
 "ui": {
 "url": "http://localhost:3400",
 "height": 200
 },
 "version": "1"
}

When loading custom plugins in Lobe Chat, an error may appear due to a violation of the

Same-Origin Policy. This is configured to be resolved by utilizing a proxy.

Figure 8. Loading custom plugins

A request using a proxy retrieves a response by sending a request to the path specified in

the /api/proxy endpoint as follows.

EQST insight | 8

Figure 9. Result of an /api/proxy request

2) /api/proxy endpoint analysis

/api/proxy consists of the following TypeScript code:
import { isPrivate } from 'ip';
import { NextResponse } from 'next/server';
import dns from 'node:dns';
import { promisify } from 'node:util';

const lookupAsync = promisify(dns.lookup);

export const runtime = 'nodejs';

/**
 * just for a proxy
 */
export const POST = async (req: Request) => {
 const url = new URL(await req.text());
 let address;

 try {
 const lookupResult = await lookupAsync(url.hostname);
 address = lookupResult.address;
 } catch (err) {
 console.error(`${url.hostname} DNS parser error:`, err);

 return NextResponse.json({ error: 'DNS parser error' }, { status: 504 });
 }

 const isInternalHost = isPrivate(address);

 if (isInternalHost)
 return NextResponse.json({ error: 'Not support internal host proxy' }, { status: 400 });

 const res = await fetch(url.toString());

 return new Response(res.body, { headers: res.headers });
};

EQST insight | 9

The address is verified through the following process according to the above code:

① Check whether the IP address of the page stored in the address is an internal network address

through isPrivate of the ip module and save the result in isInternalHost.

② If the isInternalHost value is true, a 400 error is returned instead of sending the request.

③ If the isInternalHost value is false, a request is sent with fetch and a response is returned.

You can find the source code for the module in the following GitHub Repository.

•URL: https://github.com/indutny/node-ip

In the lib/ip.js file in the corresponding repository, you can see that isPrivate verification has been

implemented as follows.

① Check whether it is a loopback address, which is an IP pointing to itself.

② Use isV6Format to check whether the address is in IPv6 format, and if not, convert the IP

address to a number and check whether it is negative or positive.

EQST insight | 10

③ If all of the above steps have been passed, check, using a regular expression, whether it is in

the private IP address range.

10.0.0.0 – 10.255.255.255 (Class A)

172.16.0.0 – 172.31.255.255 (Class B)

192.168.0.0 – 192.168.255.255 (Class B)

169.254.0.0 – 169.254.255.255 (Link Local Address5)

fc00::/7, fd00::/8 (Private IPv6)

fe80::/10 (IPv6 Link Local Address)

::1, :: (Loopback address)

3) Bypassing /api/proxy endpoint filtering

Considering the above, it can be seen that the filtering is based on the IP address and there is no

other filtering logic. The fetch function in JavaScript has the following default option values when

making a request:
let promise = fetch(url, {
 method: "GET", // POST, PUT, DELETE, etc.
 headers: {
 // the content type header value is usually auto-set
 // depending on the request body
 "Content-Type": "text/plain;charset=UTF-8"
 },
 body: undefined, // string, FormData, Blob, BufferSource, or URLSearchParams
 referrer: "about:client", // or "" to send no Referer header,
 // or an url from the current origin
 referrerPolicy: "strict-origin-when-cross-origin", // no-referrer-when-downgrade, no-
referrer, origin, same-origin...
 mode: "cors", // same-origin, no-cors
 credentials: "same-origin", // omit, include
 cache: "default", // no-store, reload, no-cache, force-cache, or only-if-cached
 redirect: "follow", // manual, error
 integrity: "", // a hash, like "sha256-abcdef1234567890"
 keepalive: false, // true
 signal: undefined, // AbortController to abort request
 window: window // null
 });

The redirect option determines whether to follow redirection of the requested URL. The follow key

value automatically makes a request to the redirected URL, while the manual key value does not

follow redirection. The error key value returns an error when redirection occurs. The default key

value for the redirect setting is follow, so if a redirection comes in response, the request will be

sent and a response will be received. If any address that does not have an IP address of the internal

network returns a redirection response to an IP address in the internal network, it is possible to

send the request to the internal network and receive the response due to the characteristics of the

fetch function described above.

5 Link Local Address: IPv6 unicast address with a range limited to a single link

EQST insight | 11

Step 2. SSRF attack

1) Server-side request forgery (SSRF) attack

Server-side request forgery (SSRF) attacks exploit a web vulnerability that allows attackers to trick

a server-side application into sending requests to unintended locations. This attack allows an

attacker to manipulate a server to communicate with internal organizational infrastructure services.

Figure 10. Overview of an SSRF attack

An attacker could exploit this vulnerability to access sensitive data that is only accessible internally,

and in some circumstances, the attacker could exploit the SSRF vulnerability to execute any

command. In addition, if a malicious attack is attempted against a third party by exploiting the SSRF

vulnerability, the attack can be viewed as an attack initiated from the server hosting the application

with the vulnerability.

EQST insight | 12

2) Lobe Chat SSRF attack scenario

1. Stealing AI information

The AI information theft scenario was conducted in the following internal LLM environment.

Open source Address

Ollama 192.168.102.231:16728

In the case of Ollama, there is no additional authentication process. Therefore, if the SSRF

vulnerability exists in the internal model, LLM information can be stolen through the RESTful API.

When a request is sent to the LLM model address built with Ollama, Ollama acts as follows:

Figure 11. Accessing an LLM model address

If a request is sent to the /api/tags path, which LLM model is used in Ollama can be seen.

Figure 12. Accessing /api/tags

EQST insight | 13

If a request is sent to the /api/ps path, which LLM model is loaded into memory can also be seen.

Figure 13. Accessing /api/ps

2. Infiltrating cloud services

Role Address

Victim 3.35.156.32

Attacker 3.35.24.239

To simulate a cloud service penetration scenario, we configure a victim using a vulnerable version

of Lobe Chat currently in service on the AWS. Data that can be used to configure or manage

instances in an AWS environment is called metadata. This can be accessed through the address

http://169.254.159.254. Since it is possible to access everything from the instance to the IAM

temporary credentials, it is possible to control the instance by stealing the credentials.

In an environment using Metadata version 1, by using the access path

http://169.254.169.254/latest/meta-data, it is possible to check what metadata exists in the instance

and then retrieve it. From the presence of iam/ in that path, you can infer that the instance is using

an IAM Role.

Figure 14. Checking the IAM/ path

EQST insight | 14

The iam/security-credentials path contains an IAM Role called rnt-ssrf.

Figure 15. IAM credential path

With access to the IAM role with that name, it is possible to obtain IAM credential information as

follows:

Figure 16. Stealing a credential

EQST insight | 15

Then, according to the IAM policy settings, it is possible to obtain control of the ec2 instance as

follows:

Figure 17. Infiltrating an instance using stolen credentials

EQST insight | 16

■ Countermeasures

On September 20, before CVE-2024-47066 was announced, version 1.19.13, which patched the

vulnerability, was released. The source code of the version can be found with the following link:

•URL: https://github.com/lobehub/lobe-chat/tree/v1.19.13

Details of the vulnerability patch can be found with the following link:

•URL: https://github.com/lobehub/lobe-

chat/commit/e960a23b0c69a5762eb27d776d33dac443058faf#diff-

7863de9f92a2b10e6b7e0438075c9d9f2639640eb5310505c64a0da11add43f3R7

As mentioned above, there are changes in the location and code of route.ts in the patch.

Figure 18. Change of route.ts in version 1.19.13

EQST insight | 17

This patch changes the vulnerable code from app/api/proxy/route.ts to app/webapi/proxy/route.ts.

The code is as follows:
import { NextResponse } from 'next/server';
import fetch from 'node-fetch';
import { useAgent as ssrfAgent } from 'request-filtering-agent';
/**
 * just for a proxy
 */
export const POST = async (req: Request) => {
 const url = await req.text();
 try {
 const res = await fetch(url, { agent: ssrfAgent(url) });
 return new Response(await res.arrayBuffer(), { headers: { ...res.headers } });
 } catch (err) {
 console.error(err); // DNS lookup 127.0.0.1(family:4, host:127.0.0.1.nip.io) is not
allowed. Because, It is private IP address.
 return NextResponse.json({ error: 'Not support internal host proxy' }, { status: 400 });
 }
};

Following the patch, the request-filtering-agent module, which implements SSRF attack prevention

logic, is used to send requests through the fetch function.

The vulnerability patch work can be performed in the Settings window as follows.

Figure 19. Patching process for vulnerable versions of Lobe Chat

Details of the vulnerability patch can be found with the following link:

•URL: https://github.com/lobehub/lobe-chat/releases

Therefore, users of Lobe Chat versions 1.19.12 and earlier that are susceptible to the SSRF

vulnerability should follow the above steps to patch the software.

EQST insight | 18

■ Reference Sites

• GitHub Repository (Lobe Chat): https://github.com/lobehub/lobe-chat

• Local Plugin Development: https://lobehub.com/docs/usage/plugins/development

• MDN Web Docs (Same-origin Policy): https://developer.mozilla.org/en-US/docs/Web/Security/Same-

origin_policy

• GitHub Advisory Database (lobe-chat `/api/proxy` endpoint Server-Side Request Forgery vulnerability):

https://github.com/advisories/GHSA-mxhq-xw3g-rphc

• GitHub Advisory Database (Insufficient fix for GHSA-mxhq-xw3g-rphc (CVE-2024-32964)):

https://github.com/lobehub/lobe-chat/security/advisories/GHSA-3fc8-2r3f-8wrg

• RFC3927 (Dynamic Configuration of IPv4 Link-Local Addresses):

https://datatracker.ietf.org/doc/html/rfc3927

• JavaScript Info (Fetch API): https://javascript.info/fetch-api

• AWS (Run commands when you launch an EC2 instance with user data input):

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

• RAON – Core Research Team (AWS Instance Meta-data SSRF to RCE): https://core-research-

team.github.io/2022-11-01/AWS-Instance-Meta-data-SSRF-to-RCE

• Ollama (RESTful API): https://github.com/ollama/ollama/blob/main/docs/api.md

